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Heat insulation is the process of blocking the transfer of thermal energy between 

objects at different temperatures. Heat transfer occurs due to conduction, convection, or 

radiation, as well as any combination of these three mechanisms. Fibrous insulations can 

completely suppress the convective mode of heat transfer for most applications, and also 

help to reduce the conductive and radiative modes to some extent. In this study, an attempt 

has been made to computationally predict the effects of microstructural parameters (e.g., 

fiber diameter, fiber orientation and porosity) on the insulation performance of fibrous 
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materials. The flexible simulation method developed in this work can potentially be used 

to custom-design optimal multi-component fibrous insulation media for different 

applications. 

With regards to modeling conductive heat transfer, a computationally-feasible 

simulation method is developed that allows one to predict the effects of each 

microstructural parameter on the transfer of heat across a fibrous insulation. This was 

achieved by combining analytical calculations for conduction through interstitial fluid 

(e.g., air) with numerical simulations for conduction through fibrous structures.  

With regards to modeling radiative heat transfer, both Monte Carlo Ray Tracing 

and Electromagnetic Wave Theory were implemented for our simulations. The modeling 

methods developed in this work are flexible to allow simulating the performance of media 

made up of different combinations of fibers with different materials or dimensions at 

different operating temperatures. For example, our simulations demonstrate that fiber 

diameter plays an important role in blocking radiation heat transfer. In particular, it was 

shown that there exists an optimum fiber diameter for which maximum insulation against 

radiative transfer is achieved. The optimum fiber diameter is different for fibers made of 

different materials and also depends on the mean temperature of the media.  

The contributions of conduction and radiation heat transfer predicted using the 

above techniques are combined to define a total thermal resistance value for media with 

different microstructures. Such a capability can be of great interest for design and 

optimization of the overall performance of fibrous media for different applications. 
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Chapter 1 General Introduction 

 

1.1 Background Information  

Heat insulation is the process of blocking transfer of thermal energy between 

objects at different temperatures. Heat transfer occurs due conduction, convection, or 

radiation as well as any combination of these three mechanisms. Conduction can be 

reduced by eliminating the physical contact between the objects. Convection can be 

suppressed by suppressing the fluid motion (via friction for instance), and radiation can 

be minimized by minimizing the view factor between the surfaces. Fibrous insulations 

can reduce conductive and radiative heat transfer between surfaces. More importantly, 

they can efficiently eradicate convective mode of heat transfer for most applications, 

thanks to the significant friction that is caused by their constituent fibers against natural 

convection (Nield and Bejan, 1998). 

Contribution of conduction or radiation to the overall rate of heat transfer through 

a fibrous medium can vary depending on the physical properties of the fibers and the 

operating temperature of the surfaces. In addition, for choosing a suitable insulation 

material for a given application, one has to consider many other factors such as the 

available space between the walls or the structural stability of the media for the given 
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environment etc. Therefore, it is important to be able to custom-design optimal 

insulations for different applications. For such a design process to be effective, it must be 

based on a mathematical platform that provides quantitative predictions of the 

contribution of each and every microstructural parameter of constituent fibers to the heat 

transfer through the media. While the physics of heat transfer in porous media has been 

studied in numerous studies in the past, an accurate, but yet computationally-feasible, 

method for design and optimization of an actual product has not been proposed yet. 

Insulation materials can be broadly classified into four different categories and the 

use of different materials depend on the application. The most common type of insulation 

is loose fill insulation. This type of insulation is usually made by loosely filling the 

insulation cavity with fibers made of fiber glass, mineral wool or cellulose. These 

insulations are commonly used as residential insulation. The second type of material is 

batt or blanket insulation. These are materials usually made of glass or mineral wool 

fibers which are laid down as blankets in the form of batts or rolls. The third kind of 

material is rigid board insulation. They are usually made of polystyrene, polyiso, 

polyurethane or fiber glass. This kind of material is usually preferred for applications 

where the strength of the insulation structure is crucial and also where the place available 

for insulation is limited. Another form of insulation material is the spray foam insulation. 

These insulations are usually obtained by spraying polystyrene, polyiso or polyurethane 

in molten form at the place of application directly. Also materials like aerogel are being 

used for high temperature insulations where place availability is limited. However it is 

not popular yet due to being more expensive than the other insulation materials. 
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Fiber-based materials represent the single largest mediator of heat insulation in 

residential and industrial applications. Application of fibrous media extends from 

ordinary building insulations to the expensive high-temperature insulation materials 

deployed in the aerospace industry, such as Alumina fibers used in reusable launch 

vehicles for reentry flights. The large surface area of the fibers provides enough friction 

to suppress the convection, leaving radiation and conduction to be the only modes of heat 

transfer in fibrous insulation materials. Contribution of the latter modes of heat transfer, 

of course, depends on the temperatures imposed on the material––conduction becomes 

almost negligible when working with high temperatures. While radiative heat transfer is 

generally important in high-temperature, conductive heat transfer is often the mechanism 

by which heat transfers through fibrous materials in temperatures near or below room 

temperature. The gist of most of the work in literature has been to treat the insulation 

material as a lumped system and study their heat insulation performance. Radiative 

transfer mostly occurs through the void spaces between the fibers in an insulation 

medium. The usual approach to such methods is to compute an effective thermal 

conductivity value which includes the contribution of conduction and radiation heat 

transfer, and to estimate the net heat transfer through the insulation material using 

Fourier’s law treating the heat transfer as a diffusion process. The main drawback of 

using such approaches for the treatment of this coupled radiative – conductive heat 

transfer is its inability to predict the heat transfer of low SVF insulations. The heat 

transfer through the insulation materials decreases as the SVF of the material decreases, 

when predicted using the diffusion approximation. However experimental observations 
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report that as SVF decreases the heat transfer through the material first decreases till it 

reaches an optimum value and then increases. This is due to the fact that the contribution 

of radiative transfer increases non-linearly at low SVFs. 

 

1.2 Heat Transfer in Insulation Materials 

1.2.1 Convection Heat Transfer 

When a temperature gradient is enforced between the opposite sides of a 

rectangular cavity in the direction of gravity, the colder (denser) fluid tends to move to 

the bottom of the enclosure (see Figure 1.1). This natural convection should overcome 

the viscous resistance of the fluid to motion. The relative importance of viscous and 

gravitational forces is often characterized by Rayleigh number. At low Rayleigh 

numbers, the viscous forces dominate the gravitational forces and free convection is 

suppressed. Free convection starts as Rayleigh number increases. Rayleigh number is 

given as: 

3g TL
Ra

β
αυ
∆

=           (1.1) 

For the case of a rectangular cavity with / 1H L >> , the critical value of Rayleigh 

number above which advection becomes important is 1708. At Rayleigh numbers greater 

than 1708 counter-rotating flow circulation patterns commonly known as Rayleigh–

Benard cells start to form (see Figure 1.2). 
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Figure 1.1: Rectangular cavity heated from below, Ra<1708. No convection takes place. 

 

The terms stable and instable systems are also used to describe heat transfer in 

regime I (Ra<1708) and II (Ra>1708). In stable heat transfer system, convection does not 

take place. 

 

 

Figure 1.2: Rectangular cavity heated from below, Ra>1708. Benard cells start to appear. 

 

For an empty rectangular cavity (no fibers included in the analysis) with a 

temperature difference of 900K across its thickness (Th=1200 K and Tc=300 K) Rayleigh 

Hot Side

Cold Side

H

gL

Hot Side

Cold Side

H

gL
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number remains below 1708 for thicknesses up to about 1.1 cm, i.e., free convection is 

negligible even without the fibers as far as the thickness is less than 1.1 cm. 

For free convection in porous media, the Rayleigh number is defined differently 

(Nield and Bejan, 1999): 

ρpm

m

g KL T
Ra

β
µα

∆
=          (1.2) 

where eff
m

p

k

c
α

ρ
= . For the geometry shown in Figure 1.1, when filled with porous media, 

The critical Rayleigh number for a porous medium, the Rayleigh number above which 

convection is expected to occur, is about24π (Nield and Bejan, 1999). Performing an 

order of magnitude analysis for heat transfer between two walls with a temperature 

difference on the order of 100 K and a spacing on the order of 0.01 m filled with a fibrous 

insulation having a fiber diameter on the order of 10 µm, and SVF of about 1% (with air 

as the interstitial fluid), one obtains a Rayleigh number on the order of magnitude of 0.1. 

Therefore, one expects convective heat transfer to be negligible for such media as long as 

their thickness (spacing between the walls) is less than 1 m, on order of magnitude, which 

practically covers most applications of fibrous insulations. Note that in the above analysis 

permeability was obtained from the equations given by (Spielmann and Goren, 1968). 

Decreasing the fiber diameter or increasing the SVF reduces the permeability of a fibrous 

medium and therefore, suppresses the convection even further. Conversely, decreasing 

the SVF or increasing the fiber diameter increases the media’s permeability and therefore 

reduces the thickness above which convection is no longer negligible. 
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1.2.2 Conduction Heat Transfer 

Conductive heat transfer occurs through the fibers and the interstitial fluid. 

Therefore, an effective thermal conductivity, which includes the contributions of the solid 

and the interstitial fluid, is often defined and used in discussing the performance of an 

insulation material. The effective thermal conductivity of a fibrous material is greatly 

influenced by its microstructural parameters such as solid volume fraction (SVF), thermal 

conductivity of the solid fibers and the interstitial fluid, fiber diameter, and fiber 

orientation. Obviously, for media consisting of more than one type of fibers, i.e., 

composite insulation media, there are more parameters influencing the insulation 

performance (Mohammadi, 2003a)). 

Conductive heat transfer through fibrous insulation materials has been studied 

analytically, numerically, and experimentally. Analytical models have been developed 

and compared with experiment to predict thermal insulation properties in terms of SVF 

and thermal conductivity of solid and interstitial phases by (Bankvall, 1973; 

Bhattacharya, 1980) amongst others. There are also analytical studies dealing with the 

effects of fiber orientation and fiber length on thermal conductivity (see for instance 

(Furmanski, 1991; Fu and Mai, 2003)). There are also numerous predominantly 

experimental studies reporting on the thermal insulation properties of different fibrous 

materials obtained, for instance, by a guarded hot plate apparatus (Mohammadi, 2003b; 

Vallabh, 2008). In such studies, performance of the material in blocking conductive and 

radiative heat transfer is often lumped together in the form of an effective conduction–

radiation thermal conductivity (Mohammadi, 2003b; Vallabh, 2008). Improved testing 
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procedures and more advanced macroscale numerical simulations have also been 

developed for studying the combined conduction-radiation heat transfer through fibrous 

media with a specific attention to the effects of operating temperature and pressure on the 

performance of high-temperature insulations by (Zhang et al., 2008a; Zhang et al., 

2008b). 

 

1.2.3 Radiative Heat Transfer 

Radiative heat transfer through fibrous insulation materials is often estimated 

using the Radiative Transfer Equation (RTE), in which the medium is assumed to be a 

pseudo-continuum (Walters and Buckius 1992). The RTE is a highly involved integro-

differential equation that can only be solved numerically. The solution procedure for this 

equation may need Monte Carlo Ray Tracing (MCRT), experimental, and/or analytical 

calculations to obtain the radiative characteristics (e.g., scattering phase function) of the 

media under consideration. Two major approaches have often been considered for 

determining radiative properties of fibrous insulation media. The first approach is to 

analytically determine the radiative properties of each individual fiber (or particle) using, 

for instance, the Electromagnetic wave theory (e.g., Mie theory), and then generalize the 

properties for the whole medium accounting for its morphology (Larkin and Churchill 

1959, Jeandel et al. 1993, Lee 1994, Cunnington and Lee 1996 and Lee 1998). The 

second approach is to experimentally obtain transmittance and reflectance values for the 

fibrous medium and extract its radiative properties via an inverse method for solving the 

RTE (Milandri el al. 2002, Nicolau et al. 1994 and Larkin and Churchill 1959). MCRT 
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has also been used to estimate the radiative properties of fibrous insulation media or to 

directly calculate the temperature or heat flux in a system in the absence of a continuum 

phase (i.e., the air entrapped between the fibers) (Coquard and Baillis 2005, Singh and 

Kaviany 2006, Coquard and Baillis 2004 and Kumar and Tien 1990). 

An IR energy beam looses energy as it travels through a fibrous medium due to 

scattering and absorption, and gains energy due to in-scattering and fiber emission along 

its path. Equation for conservation of energy along a given path (direction) with which 

one can tally the change in energy in a given direction for a small wavelength interval is 

called Radiative Transfer Equation (RTE) (Howell et al., 2011). 

4

0

( ) ( )
4b

dI
I I I d

dS

πσ
β κ

π Ω=

= − + + Ω Φ Ω Ω∫       (1.3) 

The radiative heat that transfers across a fibrous insulation material can be estimated by 

solving the RTE. In order to obtain these properties both theoretical and experimental 

methods have been considered in the past. Inverse determination of the radiative 

properties of an insulation material has been considered using the heat transmittance data 

obtained from experiments (McKay et al., 1984). The general approach in such studies 

has been to assume a common form of phase function like (e.g., Henyey–Greenstein 

phase function) and parametrically vary the scattering and absorption coefficients to 

make predictions of the RTE match experimental data (Milandri et al. 2002; Baillis and 

Sacadura, 2000). 

According to the electromagnetic theory, fiber diameter and temperature are the 

most important parameters that the treatment of radiative transfer hinges upon. The 
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electromagnetic theory is well established and has been widely used to describe the 

interaction of an IR ray with cylindrical objects (Lind and Greenberg, 1966; Liou, 1972). 

A so-called size parameter (x) is defined to relate the radiation wavelength (i.e., 

temperature) to the fiber diameter (Howell et al., 2011): 

2 r
x

π
λ

=            (1.4) 

Size parameter determines the nature of the interaction between IR radiation and a fiber 

in fibrous medium (see Table 1.1). For 1x >> , geometric optics can be used for modeling 

the IR–fiber interaction. Monte Carlo ray tracing which uses geometric optics treatment 

of IR can be used to predict the temperature or heat flux through a fibrous medium in the 

absence of the interstitial fluid (e.g., air). For1x ≤ , one needs to use the electromagnetic 

theory to predict the radiative properties of the insulation material and calculate the rate 

of heat transfer. For many common applications of fibrous insulations, the size parameter 

is about one ( 1x ≈ ). For such cases, the Mie theory was previously used to predict the 

radiative properties of the insulation materials (Lee, 1989). 

 

Table 1.1: Summary of modeling techniques based on size parameters 

size 
parameter 

modeling technique scattering treatment assumption 

10x ≥  MCRT 
laws of geometric 

optics 
wavelength smaller 
than fiber diameter 

10 0.1x> ≥  electromagnetic theory Mie scattering theory 
wavelength 

comparable to fiber 
diameter 

0.1x <  electromagnetic theory 
Rayleigh scattering 

theory 
wavelength greater 
than fiber diameter 
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When one of the above techniques is used to determine the radiative flux 

transmitted through the insulation media, another term called transmittance is defined, 

which is the ratio of total energy received by the sink and the total energy emitted by the 

source. In order to better describe the radiation process, extinction, scattering and 

absorption cross-sections and scattering phase functions need to be defined. 

The scattering cross-section ( scaC ) is a hypothetical area which describes the 

likelihood of radiation being scattered by a particle. The scattering cross-section is 

different from the geometrical cross-section of a particle and it depends on the 

wavelength of light, refractive index of the fiber, and fiber diameter. Similarly the 

absorption cross-section ( absC ) is a hypothetical area which describes the likelihood of 

radiation being scattered by a particle. The sum of absorption and scattering coefficients 

is called the extinction coefficient (extC ). Phase function (Φ ) is a non-dimensional 

parameter which is used to describe the angular distribution of scattered radiation 

(Howell el al. 2011 and Modest 2003). The values of radiative properties defined above 

are a function of temperature, refractive index of the material, fiber orientation, fiber 

diameter and fiber refractive index. The refractive index of the fibers' parent material is 

wavelength dependent. At a given temperature, there is a particular wavelength for the 

emitted IR which carries the greatest energy. This peak wavelength is computed using 

Planck’s law. It is computationally very expensive to conduct the simulations at each and 

every wavelengths emitted at a given temperature. Therefore, the optical properties used 

for the simulations are obtained at the peak wavelength associated to the temperature. 

Impurities can also be important to determining the radiative properties of a substance. It 
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was recognized that impurities can affect the radiative behavior of a glass fiber (by 

altering the refractive index) as observed by (Larkin, 1957), for instance. However, this 

effect is not included in the current study. 

When the scenario of heat transfer through fibrous insulation materials is studied, 

it is obvious that the radiative beam incident on the material heats up the fibers inside the 

insulation medium. When the fibers’ temperatures change the fibers start to emit 

radiation too. In theory it is assumed that when the fibers are spaced at a certain distance 

from each other, it can be assumed that the rays emitted by the fibers do not affect the 

emission process by the neighboring fibers. Such an assumption is called independent 

scattering assumption. This assumption can be safely made for low SVF materials. On 

the other hand for high SVF materials this assumption breaks down and the interaction 

between the rays emitted by the fibers must be evaluated. Such cases where the IR 

interactions are not neglected are grouped as dependent scattering regime.  

Another common assumption made in such studies is that the fibers are infinitely 

long. This assumption is made to avoid complicated computations involving the IR 

interaction with the sharp fiber edges when short fibers are considered. In spite of such 

assumptions being made the existing theory for computing the radiative properties are 

proved to make accurate predictions (Lee 1989). 

 

1.3 Virtual Microstructures 

To perform micro-scale simulation of heat transfer through fibrous materials, one 

needs to construct a computational domain that resembles the media’s microstructure (see 
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Figure 1.3). The internal structure of disordered fibrous materials can be considered to 

fall into one of three main categories: unidirectional structures, where axes of all 

cylindrical fibers are parallel with one another (Spielman and Goren 1968), layered 

structures, where axes of cylindrical fibers lie randomly in parallel planes often 

perpendicular to a fluid flow (Wang et al. 2007), and three-dimensionally isotropic 

structures, where fibers axes can be randomly oriented in any direction in 3-D space 

(Clague and Phillips 1997) (see Figure 1.3). Fibers in the structures shown in Figure 1.3 

a–d are allowed to have random in-plane orientations, but somewhat controlled through-

plane orientations. These fibers have a zero mean through-plane orientation, but the 

standard deviation about this mean value varies from 0 to 45 degrees from one structure 

to another. Note that a standard deviation of 45 degrees represents a random through-

plane orientation. Therefore, structures with through-plane standard deviation of 45 

degrees are three-dimensionally isotropic (Figure 1.3d). The structures shown in Figure 

1.3 e–h resemble fibrous media with layered microstructures (i.e., no through-plane 

orientations). The fibers in these structures have a zero mean in-plane orientation, but a 

standard deviation about this mean value that varies from 0 to 45 degrees from one 

structure to another. The media generation process is based on the so called µ-

randomness algorithm (Pourdeyhimi et al. 2006). In the current study, a polydisperse 

fibrous structure was not used because it does not add any additional value to the 

methods developed here. Polydisperse fibrous structures can be simulated with the 

methods developed here at expense of extra CPU time. Polydisperse simulations will 
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require fiber diameter distributions to be empirically obtained and input to the model 

(case specific, lacking universality). 

 

 

Figure 1.3: Fibrous media with random in-plane fiber orientations but different through-plane fiber 

orientations having standard deviations of 0 degree (a), 15 degrees (b), 30 degrees (c), and 45 degrees (d); 

fibrous media with zero through-plane fiber orientations but different in-plane fiber orientations having 

standard deviations of 0 degree (e), 15 degrees (f), 30 degrees (g), and 45 degrees (h). 

 

1.4 Objective of the Work 

The objective of this work is to build a design tool for insulation material 

development. A simulation method which can be used by insulation manufacturers to 

optimize the microstructure of an insulation material before manufacturing the material 

for a specific application (temperature range, thickness …) was developed.  

No through-plane but varying in-plane fiber orientations

e) g)f) h)

Random in-plane but varying through-plane fiber orientations

a) c)b) d)
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In the current study, different modes of heat transfer were isolated and the 

material’s microstructural parameters’ influence on the heat transport through a fibrous 

structure is investigated at steady state. This study is focused on developing 3-D 

simulation algorithms for modeling radiative heat transfer via MCRT and Mie theory. 

The work also includes a study of the influence of geometrical parameters of a fibrous 

insulation on conductive heat transfer. The study also entails a comprehensive study on 

heat transfer through multi-component layered (i.e., composite) insulation materials. The 

proposed computational approach allows one to decouple the contributions of solid 

structure in the total conductive heat transfer from that of the interstitial fluid and study 

them separately.  

In Chapter 2 numerical simulations to study the effective thermal conductivity of 

fibrous media with different microstructural parameters are presented. Assuming that the 

heat transfer through the interstitial fluid is independent of the geometrical parameters of 

the solid phase (for when the porosity is held constant), the energy equation was solved 

only for the solid structures, and the resulting values were used to predict the effective 

thermal conductivity of the whole media. This treatment allows the user to drastically 

reduce the computational cost of such simulations. Effect of different microstructural 

parameters on heat conduction was also studied. 

In Chapter 3, a Monte Carlo Ray Tracing (MCRT) simulation technique is 

developed to study steady-state radiative heat transfer through fibrous insulation 

materials. Scattering within the realm of geometric optics is incorporated into the MCRT 

simulations using Snell’s Law for ray refraction. Fibers’ optical properties are obtained 



www.manaraa.com

16 

from Fresnel’s law and Beer’s law based on the refractive index of the material. Two 

different treatments of “high” and “low” conductivities are considered for the fibers and 

their effects are discussed. A comprehensive parameter study was performed. 

Chapter 4 focusses on development of a dual-scale computationally-feasible 3-D 

method to simulate the transfer of radiative heat through fibrous media comprised of 

fibers with different diameters and orientations. The radiative properties of the media are 

calculated using Mie theory and are used in the Radiative Transfer Equation (RTE) 

equation for computing the attenuation and augmentation of an InfraRed ray’s energy as 

it travels through a fibrous medium.  

In Chapter 5, the techniques developed in Chapter 2 and Chapter 4 are used to 

predict heat transfer through virtual multi-component fibrous insulations. The method 

involves computing the conduction and radiation resistance of the media individually and 

combining them using method of parallel resistances to obtain a total thermal resistance 

value. 

In Chapter 6 the conclusions drawn from the work are presented followed by the 

author’s recommendations for future study. 
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Chapter 2 Modeling Steady State Conduction in Fibrous Media1 

 

2.1 Introduction 

To better investigate the effects of microstructural parameters on the performance 

of fibrous insulation materials exposed to conductive heat flow, microscale 3-D 

simulations are developed. Such a simulation methodology is valuable as it allows one to 

isolate the effect of each individual parameter and study its influence on the performance 

of the whole media (i.e., the fibrous structure and the interstitial fluid). Since heat transfer 

through the interstitial fluid takes place independently from the geometrical parameters of 

the solid phase (for a given porosity), the energy equation was solved for the solid phase 

(fibrous structure) only. The conductivity values obtained for the solid structure can then 

be easily combined with the conductivity of the interstitial fluid to predict the effective 

thermal conductivity of the whole media if needed. This treatment allows us to 

significantly reduce the computational cost of such simulations (compared to the case 

where air is included in the simulations), and thereby to make a comprehensive parameter 

study feasible. In particular, with this treatment, one can consider much larger 

                                                 
1 Contents of this section have been published in an article entitled “A simple simulation method for 
designing fibrous insulation materials”, by R. Arambakam, H.V. Tafreshi, and B. Pourdeyhimi, Materials 
and Design 44, 99 (2013). 
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computational domains for simulation to reduce the statistical errors associated with each 

simulation, and consequently produce a large simulation dataset. 

 

2.2 Conduction in Fibrous Media 

Conductive heat travels through both the fibers and the interstitial fluid (often air). 

Conductive heat transfer formulations for porous media are often developed considering 

heat flowing in parallel or series paths. When heat flow is assumed to occur in a series 

mode, then flow of thermal energy is assumed to occur in sequence through a series of 

layers. Conductive heat transfer is said to occur in parallel mode if the flow of heat is 

described through simultaneous parallel paths through the medium. In calculations the 

thermal conductance of each path is added to derive a total rate of heat flow through the 

entire medium (Bankvall, 1973; Bhattacharya, 1980). The most basic expression (Eq. 

(2.1)) for defining an effective thermal conductivity in porous media is developed based 

on a weighted average of the thermal conductivity values of the fibers and interstitial 

fluid (Bankvall, 1973; Bhattacharya, 1980), and heat transfer is assumed to occur in a 

parallel mode through solid and the interstitial fluid. 

(1 )eff f gk k kα α= + −          (2.1) 

The major problem with this equation is that it assumes the solid phase to act like a solid 

block connecting the heat source to the heat sink, neglecting the fact that heat has to flow 

through a number of small fiber-to-fiber contact areas before it can reach the sink. 

Therefore, one can expect that the term fkα in the above equation significantly over-

predicts the conductivity of the solid phase. The second term in the right-hand side of Eq. 
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(2.1), on the other hand, is expected to be quite accurate in predicting the conductivity of 

the fluid phase. This is because the interstitial fluid does connect the source and sink 

plates with no considerable bottle-necks in the heat flow path, at least for most practical 

fibrous structures (i.e., porous media with very low solid volume fractions). 

 

2.2.1 Modeling Conductive Heat Transfer in Fibrous Media  

An in-house MATLAB code was developed to generate fibrous structures with 

different structural parameters––virtual fibrous media with controlled porosity, thickness, 

and fiber diameter, as well as fibers in-plane and though-plane orientations (see Figure 

1.3). Due to the randomness of the generation process, each simulation is repeated at least 

three times to reduce the statistical uncertainty of the results presented. After each fibrous 

structure is produced, a script file is produced for the GAMBIT software in which the 

actual SVF of the structure is measured and also is meshed using tetrahedral elements and 

exported to the Fluent code for heat transfer calculations. 

The fibrous structures were considered to be sandwiched between a hot and cold 

plate as shown in Figure 2.1. A temperature gradient is imposed across the thickness of 

the media by assigning different temperatures to the hot and cold plates. The steady-state 

heat equation is solved for the flow of conductive heat through the fibers using the Fluent 

CFD code. 

2 2 2

2 2 2
0

T T T

x y z

∂ ∂ ∂
+ + =
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         (2.2) 
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Figure 2.1: An example of the computational domains used in the study with corresponding boundary 

conditions. The fibrous structure shown here has a 3-D isotropic fiber orientation (i.e., three-dimensionally 

random fiber orientations). 

 

Symmetry boundary condition has been considered for all lateral boundaries of the 

simulation domain. Although no plane of symmetry can actually exist in a disordered 

fibrous structure, the error associated with such a boundary condition is negligibly small 

when a large computational domain is considered for the simulations as the heat flow is 

mainly in the direction of the macroscopic temperature gradient (i.e., through-plane 

direction) (Wang et al., 2007). The boundary conditions considered in the current 

simulations are shown in Figure 2.1. An arbitrary fiber thermal conductivity of 0.2 W/m-

K (polypropylene) and a fiber diameter of 8µm were considered unless otherwise 

specified. The temperatures of the hot and cold plates are also arbitrarily chosen to be 

330K and 300K, respectively. Since no air is considered in the calculations, heat transfer 

between the hot and cold plates is due only to conduction in the solid phase.  
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where q is the heat flux computed using Fluent, L is the thickness of the medium, A is the 

area of one of the heat plates and T∆ is the imposed temperature difference between the 

plates. 

Thermal and electrical conductivities of a fibrous structure are greatly influenced 

by the fiber-to-fiber contact area at the fibers’ crossover points (Faessel et al., 2005; 

Zhang and Yi, 2008; Zhao et al., 2009; Zhou et al., 2012). Depending on the process by 

which a fibrous mat is produced, the fiber-to-fiber contact area may be negligibly small 

(e.g., when the fibers are perfectly cylindrical) or considerable large (e.g., when the fibers 

are at a melt state during the mat formation and fuse together at the crossover points, or 

bonded together via an adhesive). Accurate determination of the fiber-to-fiber contact 

area in fibrous mats is a challenge, as it depends on so many parameters such as material 

of the fibers and the fiber formation process (e.g., fiber spinning process) as well as the 

mat formation and mat consolidation processes, to name a few. It is therefore, unlikely 

that a universal correlation for the fiber-to-fiber contact area can be developed. To 

circumvent this problem when modeling the fibers which are perfectly round, the fibers 

were allowed to interpenetrate into one another (see Figure 2.2). 

A restriction on the allowable distance between the axes of two fibers was placed 

at their crossover points to somehow control the extent of fiber-fiber interpenetration. 

The allowable distance between two fibers is non-dimensionalized using the fiber 

diameter fd and is shown here with*d . This simple treatment allows us to simulate a 

fibrous structure consisting of perfectly round fibers, but yet produce finite contact areas 

for the flow of conductive heat. 
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Figure 2.2: An example of a fiber-to-fiber contact in a real nonwoven fabric (a); (b) interpenetrating fibers 

considered to model an actual fiber-to-fiber contact. A  of 0.9 is considered here. 

 

To investigate if the allowable distance affects the structure generation process, a 

separate MATLAB code has been developed to compute the mean and the standard 

deviation of the fiber orientations for each generated structure. Once the fiber statistics 

are computed, histograms for fibers’ in-plane and through-plane orientations are 

generated and compared with the input distributions (see Figure 2.3). The media 

considered in this figure have 3-D isotropic random structures with a constant SVF of 

a)

b)
* 0.9d =
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5%. It can be seen that the input and output fiber orientation distributions are in good 

agreements. 

A *d value in the range of *0.9 0.95d< <  has been used for the remainder of the 

simulations reported in this paper. Note that structures generated with a *d values greater 

than 0.95 can be hard to mesh. Note also that as mentioned earlier, fiber-to-fiber contact 

area depends strongly on the material of the fibers and the manufacturing process by 

which they are produced. Therefore, to take full advantage of the simulation method 

developed in this work, one has to first calibrate the model with experiment to obtain the 

appropriate *d for his/her specific media. Once the model is calibrated, it can be used to 

quantitatively study the effects of different microstructural parameters on the material’s 

performance. Even in the absence of such calibration, the current results can still be used 

for design and development of new insulation media in a qualitatively manner. 

It is worth mentioning that the total volume of the fibrous structures was obtained by 

numerically calculating the volume of the voids between the fibers and subtracting it 

from the simulation domain using the GAMBIT software (as opposed to adding up the 

volume of the individual fibers). Therefore, the overlapping volumes between the 

interpenetrating fibers will not be counted twice.  

 

2.2.2Simulation Setup 

Solution of Eq. (2.2) provides the temperature of the fibers and consequently, the 

total heat flux through the fibrous media. An example of such calculations is shown in 

Figure 2.4a. Before performing the parameter study, a series of computational 
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experiments were performed to ensure that the results of the calculations are not affected 

by the choice of REV or the density of the tetrahedral meshes. 

 

 

Figure 2.3: Comparison between the input and output in-plane and through-plane fiber orientation 

distributions for different values. 
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Therefore the solid phase thermal conductivity of 3-D isotropic fibrous structures was 

computed with given average microstructural parameters of 5%α =  and 8fd = µm, but 

varied the x–z dimensions (the dimension normal to the heat flow) of the REV from 

200 200× µm to 700 700× µm. For this study, a thickness of 300µm for the computational 

domain and 30 grid points around the circular cross-section of each fiber was used. As 

can be seen in Figure 2.4b, statistical uncertainty of the simulation results becomes 

negligible for any x–z dimensions greater than about 300 300× µm. 

The virtual insulation media were meshed with tetrahedral elements with uniform 

mesh texture all over the computational domain. The effect of mesh density on the 

effective thermal conductivity was studied by varying the grid interval size in such a way 

to obtain 10, 13, 18 and 27 grid points around the circular cross-section of the fibers (see 

Figure 2.4 c). These results indicate that 13 grid points around each fiber (the value used 

in the remainder of this paper) is sufficient to obtain mesh-independent results. Note that 

with coarser mesh sizes, one may have difficulty meshing the structures.  

In addition to monitoring the residual values associated with the energy equation 

during the iterative solution procedure, the heat flux values at both the hot and cold plates 

was also monitored. The simulations are considered to be converged when the heat flux 

values at these plates perfectly match with one another (conservation of energy) and also 

they no longer change upon additional iterations. 
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Figure 2.4: An example of fiber temperature calculations with red to blue representing hot to cold is shown 

in (a). Influence of domain size and mesh density on thermal conductivity prediction for a typical fibrous 

structure is shown in (b) and (c), respectively. 
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In Figure 2.5, a comparison is given between the results of the current simulations 

and those of Vassal et al., 2008, in which the fiber-to-fiber contacts were treated with a 

convective boundary condition. To better isolate the effects of SVF, the conductivity 

values obtained for solid fibrous structures sk are normalized by that obtained for media 

with an SVF of 10%. The media considered for this comparison have 3-D isotropic fiber 

orientations. Good qualitative agreement with the two approaches is evident. 

 

 

Figure 2.5: A comparison between normalized conductivity values obtained from the current numerical 

simulations and those of Vassal et al., 2008. Thesk for each SVF has been normalized with the value ofsk

for SVF=10% ( 10%
skα= ). The media considered for this comparison have 3-D isotropic fiber orientation. 
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2.3 Results and Discussions 

The results presented in this section are obtained using a fiber diameter of 8µm in 

simulation domains with a thickness of 300µm and in-plane dimensions of 500 500× µm, 

unless otherwise stated. To study the influence of fibers’ through-plane orientation, a 

series of fibrous structures with identical parameters but different through-plane fiber 

orientations were generated. The in-plane fiber orientation distribution considered for 

these structures has a 45-degree standard deviation about a zero mean value (i.e., random 

in-plane fiber orientations). Figure 2.6a shows the effective thermal conductivity of the 

media with varying through-plane fiber orientations. It can be seen that increasing the 

through-plane orientation of the fibers increases the effective thermal conductivity of the 

solid structure. This is because increasing fibers’ through-plane orientation increases the 

probability that heat flows along the length of the fibers as opposed to travelling in the 

transverse directions and so needing to go through the narrow fiber-to-fiber contact areas. 

For completeness of the presentation, the input and output fiber orientation distributions 

for each case have been reported.  

Simulations of media with different in-plane fiber orientations are shown in 

Figure 2.6b. The media considered for these simulations have through-plane fiber 

orientation distributions with a zero mean value and a 15-degree standard deviation (i.e., 

almost layered structures). It can be seen that in-plane orientation of the fibers has no 

noticeable influence on the effective thermal conductivity of the structure. It is also 

interesting to note that although there are more number of fiber-to-fiber contacts in media 

with random in-plane fiber orientations (i.e., the media with a standard deviation of 45 
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degrees for the fibers in-plane orientation distribution) in comparison to those with 

aligned fibers (i.e., media with standard deviations much less than 45 degrees for the 

fibers in-plane orientation distribution), the average fiber-to-fiber contact area is larger 

when the fibers are aligned. The total number of fiber-to-fiber contacts in the domains 

was computed and it was found that as the standard deviation of the fibers’ in-plane 

orientation distribution increases from 15 to 45 degrees, the number of fiber-fiber 

contacts increase by about 25%. However, the average overlap volume between any two 

fibers (proportional to the average contact area between two fibers) reduces by a factor of 

3 to 5 leading to almost no influence on the materials thermal conductivity. For 

completeness of the presentation, the input and output fiber orientation distributions for 

each case have been reported. 

The effect of varying fiber diameter on conductivity is studied in Figure 2.7a. It 

can be seen that fiber diameter considerably affects the performance of an insulation 

medium. This can be explained by considering the fact that increasing the fiber diameter, 

for a given SVF, reduces the number of fiber-to-fiber contacts thereby reducing the 

number of bottle necks on the heat flow paths from the hot plate to the cold plate, while 

increasing the area of each contact on average. Figure 2.7b shows the influence of 

varying solid volume fraction of the media. As expected, conductivity of the structure 

significantly increases by increasing the SVF. This conclusion was drawn based on the 

fact that the conductivity of the interstitial fluid is always less than that of the solid phase. 

Note however that, if the interstitial fluid happens to be more conducting than the solid 

phase, then the conductivity of the material decreases with increasing its SVF. 
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Figure 2.6: Effect of varying the through-plane (a) and in-plane (b) fiber orientations on conductivity of 

fibrous structures. Input and output fiber orientation distributions are shown below each plot for 

comparison. 
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Varying the SVF or fiber diameter did not show any influence on the in-plane or through-

plane fiber orientation distributions (not shown for brevity). Similar trends are predicted 

by the analytical formulations given in Bankvall, 1973 and Bhattacharya, 1980. 

 

 

Figure 2.7: Effects of fiber diameter (a) and solid volume fraction (b) on thermal conductivity of fibrous 

structures for media with 3-D isotropic fiber orientations. 
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The solid structure conductivity values obtained from these simulations can easily 

be used to compute the effective thermal conductivity of the insulation material as a 

whole using Eq. (2.1). Figure 2.8 shows the effective thermal conductivity of insulation 

media made of different materials such as aluminum, stainless steel, glass, and 

polypropylene with air as the interstitial fluid, for the purpose of comparison. It can be 

seen that microstructural parameters of the fibrous structure have insignificant influence 

on the insulation performance of the material, if the conductivity of the solid material is 

close to that of air.  

 

 

Figure 2.8: Effective thermal conductivity of fibrous insulation media made of different materials as a 

function of SVF. The intestinal fluid is air. 
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strategy presented here is developed for when the conductive heat transfer is the 

dominant mode of heat transfer. When working with very high temperatures, radiation 

will also contribute to heat transfer across the media (Zhang et al., 2008b). The major 

limitation of the current modeling approach is that the structure generation algorithm 

needs to be calibrated with experiment to obtain a suitable *d value. However, once the 

tool is calibrated it can readily be used for designing new products. The other limitation 

of the model is the case where fibers barely touch one another at the crossovers. In this 

case, a *d value very close to one should be used for generating the fibrous structures. 

Large *d values results in structures which are hard to mesh. Moreover, narrowing the 

range of acceptable *d values (say 0.95<*d <0.97) may affect the orientation distribution 

of the fibers (due to which the fiber orientation distribution was monitored for the case of 

0.9< *d <0.95 throughout the paper). Although not a limitation of the simulation 

methodology, simulating thick media requires significant computational memory. The 

current simulation approach can also be modified to model media with crimped fibers or 

fiber made of more than one material, i.e., multi-component fibers. 

 

2.4 Conclusions for Conduction Heat Transfer 

An easy-to-implement simulation methodology is developed to study the role of 

microscale geometry of a fibrous material on its performance as an insulation medium. 

The simulation results presented here can be used qualitatively (or quantitatively after 

calibration) to better design and develop fibrous materials for insulating against 

conductive heat transfer. The results of the current numerical simulations indicate that 
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heat conduction through solid fibrous structures increases by increasing the solid volume 

fraction, fiber diameter, and fibers’ through-plane orientations. The in-plane orientation 

of the fibers, on the other hand, did not seem to show any significant influence on the 

material’s conductivity. It was also shown that the microstructural parameters of fibrous 

insulations have negligible influence on the material’s performance if the conductivity of 

the solid phase is close to that of the interstitial fluid, as expected. 
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Chapter 3  Simulation of Radiative Heat Transfer via Monte Carlo Ray 

Tracing2 

 

3.1 Introduction 

The general procedure in MCRT is to emit a large number of energy bundles from 

randomly selected locations and directions from given surface, and then trace their 

propagation through the medium until they exit the domain, or are exhausted due to 

absorption. Parameters needed for MCRT in fibrous media include the basic 

microstructural parameters of the material such as fiber diameter, fiber optical properties, 

material porosity and thickness. MCRT can therefore be used in developing fundamental 

relationships between a material’s thermal performance and its microstructural building 

blocks. The major restriction of the MCRT in fibrous media is that it requires the fiber 

diameter to be large compared to the wavelength of the incoming radiation, so that the 

rules of geometrical optics can be applied (Coquard and Baillis, 2005; Coquard and 

Baillis, 2006). When the principles of geometric optic are no longer applicable, as is the 

                                                 
2 Contents of this section have been published in an article entitled “A Monte Carlo Simulation of Radiative 
Heat Through Fibrous Media: Effects of Boundary Conditions and Microstructural Parameters”, by R. 
Arambakam, S.A. Hosseini, H.V. Tafreshi, and B. Pourdeyhimi, International Journal of Thermal Sciences 
50, 935 (2011); and part in “Analytical Monte Carlo Ray Tracing simulation of radiative heat transfer 
through bimodal fibrous insulations with translucent fibers”, by R. Arambakam, H.V. Tafreshi, and B. 
Pourdeyhimi, International Journal of Heat and Mass Transfer 55, 7234 (2012). 
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case for nanofiber media, Mie or Rayleigh scattering theory should be considered 

(Cunnington and Lee, 1996). 

As the in-plane dimensions of the insulation materials are usually much larger 

compared to the thickness of the material, it is computationally expensive for simulating 

the entire insulation material. Therefore only a small portion of the insulation in the in-

plane direction can be subjected to computational simulations. In order to do so it is 

necessary to impose boundary conditions that can effectively approximate the extended 

domain as a representative domain using periodic or symmetric boundary conditions. To 

the author’s knowledge, treatment of the energy bundles’ interaction with the periodic or 

symmetry boundary conditions for the MCRT method was not established. 

In order to establish these boundary conditions, media consisting of specularly 

reflecting opaque fibers having unimodal/bimodal fiber diameter distributions were 

considered. The simulations were conducted in 2-D ordered geometries. Once the 

boundary conditions were established they were thoroughly tested using the 2-D 

geometries. After the validity of these boundary conditions were tested the MCRT 

method was then extended to simulate radiative transfer in 3-D disordered virtual fibrous 

media with unimodal and/or bimodal fiber diameter distributions consisting of fibers 

whose surfaces are specularly reflective, and are translucent to Infrared (IR) radiation. 

Scattering within the realm of geometric optics was incorporated into the current MCRT 

simulations using Snell’s Law for ray refraction. Fibers’ optical properties are obtained 

from Fresnel’s law and Beer’s law based on the refractive index of the material. Two 
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different treatments of “high” and “low” conductivities were considered for the fibers and 

their effects were studied. 

 

3.2 Problem Setup and Boundary Conditions 

The first step to simulating radiative heat transfer through fibrous materials is to 

construct a computational domain that resembles the media’s microstructure. Here, 2-D 

simulation domains were considered in which fibers are arranged in square arrays as 

shown in Figure 3.1.  

 

 

Figure 3.1: A schematic illustration showing the 2-D simulation domains considered in the current study. 

 

To model fibrous materials with different properties, a MATLAB program was 

developed that generates 2-D simulation domains on the basis of the parameters of 

interest such as Solid Volume Fraction (SVF), fiber diameter, and media’s thickness. 

Because of the inherent symmetry present in the fiber arrangement, only one row of 

fibers is considered for the simulations (see Figure 3.1). Symmetric or periodic boundary 

conditions are considered for the upper and lower boundaries, and their corresponding 

Domain boundaries
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results are compared with one another. The source and sink boundaries are assumed to be 

perfect absorbers/emitters, and kept at constant temperatures of Ts=1200K and Tc=300K, 

respectively. Fibers are opaque with specular surface, and their diameters are considered 

to be greater than 30µm to permit neglecting diffraction effects in the simulations, as the 

wavelength of the IR radiation emitted from a high-temperature heat source (1200K here) 

is much smaller than 30µm (Argento and Bouvard, 1996). According to (Argento and 

Bouvard, 1996), for the geometrical optics to be accurate, wavelength of the thermal 

radiation and diameter of the fiber must satisfy the relationship / 10fdπ λ < . For 

instance, for a fiber diameter of 30µm, wavelength of the thermal energy should be 

smaller than 9.42µm for the geometric optics to be applicable. With such an upper limit 

and at a temperature of 1200sT K= , almost 94% of the thermal radiation emitted from 

the source is in the band of 0 9.42F → , according to Planck’s law (Incropera et al., 2006). 

This means that 94% of the energy emitted from the source can be correctly modeled 

using the algorithm presented here. It is also worth mentioning that, although the sink 

temperature is 300K and there are probably more errors associated with using geometric 

optics for rays emitted at such a temperature, the sink has practically no influence on the 

results since the radiative energy is proportional to the fourth power of the temperature. 

As it will be seen later that the minimum temperature attained by the fibers is around 

700K indicating that at least 80% of the energy emitted by the fibers has a wavelength 

less than 9.42 mµ . The above procedure is summarized in the flowchart shown in Figure 

3.2. 
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For each ray emitted from a point source (either from a fiber or the heat source), 

the MATLAB code computes the trajectory of its path through the domain, as it 

penetrates into the medium and undergoes reflection across the surface of the fibers. This 

ray tracing algorithm is used for calculation of fiber-to-source, fiber-to-sink and fiber-to-

fiber view factors, as well as energy transmittance through the media. Fiber-to-fiber view 

factor ,i jF  is the fraction of radiation energy emitted from fiber i that is intercepted by 

fiber j. Similarly, fiber-to-source view factor ,i hF and fiber-to-sink view factor ,i cF are 

fractions of radiation energy emitted from fiber i that are intercepted by source or sink 

plates, respectively. In view factor calculation, rays are emitted from the fibers, and no 

reflection or refraction event from the fibers, source, or sink is considered. Note that the 

fibrous media are modeled as “participating media” in the context of radiative heat 

transfer, and therefore for the transmittance calculations, the amount of radiation energy 

emitted by the source as well as that emitted by the fibers is computed. The rays are 

allowed to undergo subsequent scattering events as they travel through the media until 

they eventually reach the sink plate. Rays lose some energy every time they encounter a 

fiber. When the ray intersects with the fiber, it is reflected with the same incident angle 

(this is same in the case of symmetry boundaries as well). When the ray intersects with 

the sink or source, it ends path.  

The ray tracing process is shown in Figure 3.3 with symmetric and periodic 

boundary conditions for better illustration. Note that the symmetry boundary condition 

treats the rays as a perfect reflector, i.e., the incident rays will get specularly reflected 

with the exact same intensity. The periodic boundary, on the other hand, translates the 
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incident ray to the alternate side of the domain while preserving the angle and intensity of 

the ray. 

 

Figure 3.2: Flow chart summarizing the simulation steps. 

 

 

Figure 3.3: An example of rays traced through a simulation domain with symmetry (a) and periodic (b) 

boundary conditions. 
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After the view factors are calculated, steady-state fiber temperatures are obtained by 

solving the conservation of energy equation. For a given fiber one can write: 

4 4 4 4 4 4
, , ,
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( ) ( ) ( ) 0
n

i j i j i h i h i c i c
j

F T T F T T F T T
=

− + − + − =∑      (3.1) 

where hT , cT , and iT represent temperature of the hot plate, cold plate, and the fibers, 

respectively. Writing the conservation of energy for each fiber in the domain, n equations 

for n unknowns (fiber temperatures) are obtained. These equations can be written in 
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and 

4 4
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4 4
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. 

It must be noted that with periodic or symmetric boundary conditions, one has to exclude 

the view factor, ,i iF , corresponding to the rays that were emitted from a fiber and 

intercepted by the very same fiber, from the view factor summation (diagonal elements) 

in matrix A. This is especially important when the medium is made of fibers which are 

arranged in ordered configurations. In the case of randomly distributed fibers this effect 

may only affect the fibers close to the symmetry boundaries. With the periodic boundary 

conditions in disordered media, the effect is even less pronounced as the likelihood of a 

ray emitted from a fiber getting intercepted by itself after reentering the domain is quite 

small. The above equation is numerically solved in MATLAB. Now the total energy 

received by the sink is calculated and normalized by the total energy emitted. 

 

3.2.1 Validation of the Method 

To verify the accuracy of the view factor calculations, a simple case for which an 

analytical expression exists was simulated. View factor for the geometry shown in Figure 

3.4a can be obtained using Eq. (3.2) (Incropera et al., 2006): 

21
, ( / ) cos ( / ) 1 1 ( / )h fF d s d s d s−= + − −       (3.2) 
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A simulation domain was setup which was similar to the one shown in Figure 3.4a (one 

single fiber in a domain with symmetry or periodic boundary conditions), the fraction of 

radiation energy released from the source boundary and received by the fibers is 

calculated. With 10d = 20s = , a view factor of ,h fF ≅0.64 was obtained, which is in 

excellent agreement with Eq. (3.2). Note that, according to this equation, view factor ,h fF

(and therefore ,f hF ) is independent of the distance between the fibers and the source, 

which has also been observed from the simulation results. 

For further validation of the algorithm, a row of fibers placed between a hot and 

cold plate as shown in Figure 3.4b was considered. Temperature of the fibers at steady-

state can be calculated by writing the conservation of radiative energy for the fibers. 

Here, the energy received by the fibers from the hot plate should be balanced by that 

emitted to the cold plate: 

4 4 4 4
, ,( ) ( )f f h h f f f c f cA F T T A F T T− = −        (3.3) 

where ,f hF  is the view factor for rays emitted from the fibers and received by the hot 

plate, and fA  is the surface area of a given fiber (note that , ,f f h h h fA F A F= ). Because of 

the existing geometrical symmetry, , ,f h f cF F= . Eq. (3.3) therefore results in

4 4 4( ) / 2f h cT T T= + . 
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Figure 3.4: Schematic of the cases considered here for validation of a) view factor calculation, and b) 

steady-state temperature calculation. 

 

Radiative heat transfer in the above geometry was computed and a fiber 

temperature of 1010fT K= with the plate temperatures of 1200hT K= and 300cT K= was 

obtained, which is the same as what one obtains using Eq. (3.3), indicating excellent 

agreement between the simulations and analytical calculations. It is worth mentioning 

that if the view factor ,i iF is not excluded from the summation given in matrix A, with 

symmetry or periodic boundary conditions, a wrong temperature prediction will be 

obtained from the simulations. It is also interesting to note that, according to Eq. (3.3), 

temperature of the fibers is independent of the numerical value of the view factor 

between the fibers and the heat source (sink). This has also been observed in the 

simulation results. 

To further assess if periodic and symmetry boundary conditions can correctly 
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simulation domain are compared to the ones having periodic or symmetric boundary 

conditions (Figure 3.3 a, b), with that of an extended twelve-row domain as shown in 

Figure 3.5. The medium considered in these simulations has a SVF of 5% and a thickness 

of 1.36 mm, with fibers having a diameter of 30µm. Similarly, ,i iF view factors are 

excluded from the calculations, even though they are mostly zero for fibers far from the 

boundaries. Temperature predictions obtained from these calculations are shown in 

Figure 3.5b. Temperature of each row in the extended model matches perfectly with 

those obtained from the abovementioned one-row simulation domains with either 

periodic or symmetric boundary conditions (Figure 3.3 a, b). Also note that periodic and 

symmetry boundary conditions result in identical temperature profiles in the simulations 

considered here. 

 

3.2.2 Testing of the Model 

For the sake of simplicity, an averaged diameter representing each fiber diameter 

distribution was assumed. Unless otherwise stated, fibers with an emissivity of 0.3 

considered and a minimum diameter of 30µm was used. The source and sink 

temperatures are considered to be 1200K and 300K, respectively. 

In Figure 3.6, temperature profiles in three different media with a fiber diameter of 30µm 

but different SVFs of 5, 10, and 15% was compared. It can be seen that temperature 

decreases across the thickness. It is interesting to note that although distance between the 

fibers and the source increases by decreasing SVF, their temperatures change only very 

slightly (note that the media’s thickness increases by decreasing the SVF when the fiber 
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diameter and their count are kept constant). This can be explained by considering the fact 

that radiation is the only mode of heat transfer in the calculations (no conduction through 

the air), and the rays intensity is preserved no matter how far they travel through the 

media until they encounter with a fiber. 

 

 

Figure 3.5: An example of the extended simulation domains (a) and its fiber temperature profile (b). 

Temperature profiles obtained from simulations with one-row domains shown in Figure 3 are also added 

for comparison. 
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To study the effects of material’s thickness on the backside temperature of the 

insulation media, six different media with different thicknesses were simulated. Figure 

3.7, shows the backside temperature (temperature of the last row of the fibers) of 

different fibrous insulators with different thicknesses, but identical SVFs and fiber 

diameters of 5% and 30µm, respectively. It can be seen that the back temperature 

decreases by increasing the material’s thickness, as expected. 

 

 

Figure 3.6: Temperatures of individual fibers across thickness of three different media with respective 

SVFs of 5%, 10%, and 15%, but identical fiber diameters. 

 

Figure 3.8 compares the steady-state energy transmittance through fibrous 
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SVF, and absorptivity. This is because increasing the thickness or SVF of the media 

increases the number of times a ray may encounter a fiber before exiting the domain. 

 

 

Figure 3.7: Effect of thickness of insulation media on the material’s back (last fiber row) temperatures. 
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through the media. As a ray’s energy is proportional to the fourth power of its 

temperature, it can be expected that the contribution of the energy emitted from the 

source be greater than that from the fibers, and therefore, fibers that reflect better lead to 

higher transmittance.  

Figure 3.9 shows the effect of fiber diameter on the steady-state radiation 

transmittance versus SVF. Twelve fibers per row were used for the simulations reported 

in this figure. It can be seen that transmittance is independent of fiber diameter when 

number of fibers and SVF are kept constant. This is because by increasing the fiber 

diameter in this condition, the simulation domain increases with the same scaling factor, 

and so the resulting transmittance remains unchanged. This effect could be attributed to 

the nature of 2-D ordered simulation domains. When the thickness and SVF are kept 

constant, decreasing the fiber diameter leads to an increase in the number of fibers, which 

in turn, leads to an increase in the specific surface area of the medium. In the 2-D 

simulations reported here, number of fibers is kept constant, while the thickness where 

allowed to change. 

Bimodal fibrous media where two different fiber diameters are used to represent 

each fiber species were also studied. Figure 3.10a shows a schematic illustration of the 

fiber arrangement considered in the simulations. For the sake of brevity, only the case 

where the fine ( fn ) and coarse (cn ) number fractions are identical, and are equal to 0.5 is 

considered. We vary, however, the coarse-to-fine fiber diameter ratios, cfR , from 1 to 12. 

Figure 3.10b, shows temperature profiles obtained for media having but different cfR  but 

identical SVF, fine fiber diameter, and number of fibers per layer.  
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Figure 3.8: Influence of thickness (a), fiber absorptivity (b), and SVF (c) on energy transmittance. 
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Figure 3.9: Effect of fiber diameter on transmittance as a function of SVF. Note that the number of fibers 

is kept constant, but the thickness of the media is allowed to vary. 

 

As can be seen, media thickness increases by increasingcfR . The fibers’ temperature, 

however, stays almost the same regardless of the media’s SVF. 
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and is equal to 12 per row. It can be seen that by increasing cfR  from 2 to 12, 

transmittance increases by about 25%. This indicates that transmittance is weakly 

dependent on the coarse-to-fine fiber diameter ratios. Note again that here the total 

number of fibers are fixed. It was speculated that cfR will have a much strong influence of 

transmittance, if the number of fibers where allowed to decease as a result of increasing 

cfR when SVF and thickness are kept constant. After through validation and testing of the 
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MCRT technique it was extended to simulate radiative heat transfer through fibrous 

insulation materials. 

 

 

Figure 3.10: a) a schematic illustration of bimodal fibrous media considered in the current study. b) 

Temperature profiles obtained from simulating bimodal fibrous media with different coarse-to-fine fiber 

diameter ratios. 
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Figure 3.11: Influence of coarse-to-fine fiber diameter ratio on energy transmittance through media with a 

fixed SVF, number of fibers, and a fine fiber number fraction. 
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different properties, a MATHEMATICA program was developed to generate 3-D 
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Periodic boundary conditions are considered for the treatment of rays 

encountering the boundaries. The in-plane size of the simulation domain is considered to 

be much larger than the length scale of the system, fiber diameter, to minimize statistical 

errors associated with the simulation domain size. The source and sink boundaries are 

assumed to be perfect absorbers/emitters, and are kept at constant temperatures of Ts=850 

K and Tc=308 K, respectively. A MATLAB program which uses the virtual fibrous 

structures and computes the trajectory of the rays through the media was developed. The 

fibers’ refractive index used in the current study (glass fibers) is obtained from the work 

of (Larkin, 1957; Larkin and Churchill, 1959). Diameter of the fibers is considered to be 

greater than 20 µm for the geometric optics assumption to be valid (Argento and 

Bouvard, 1996). The sink plate’s temperature is 308 K, and there are probably some 

minor errors associated with using geometric optics for modeling the interactions 

between the fibers and rays emitted at such a temperature. However, in comparison to the 

source plate, the contribution of the sink plate in the final heat flux or fiber temperature 

values is quite insignificant. This is because the intensity of radiative energy is 

proportional to the fourth power of temperature, and so the rate of heat transfer is more 

sensitive to the source plate’s temperature. 

For each ray emitted from a point source (either from a fiber or the heat source), 

the MATLAB code computes the trajectory of its path through the domain as it penetrates 

the medium and undergoes reflection across the surface of the fibers, as is shown in 

Figure 3.12. In this figure, the red lines show the trajectory of an IR ray traveling through 

the medium, whereas the blue and gray cylinders represent coarse and fine fibers. To 
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better visualize how the periodic boundary conditions are implemented, the ray is shown 

with a black line every time it exits from a periodic boundary and reenters from the 

opposite side of the box. 

A ray undergoes a series of reflection or transmittance events until its energy 

reaches a negligible value, or till the ray encounters the source or sink boundaries. Once 

the intersection of a ray with a fiber is known, the angle between the incoming ray and 

the normal to the cylinder at that intersection point, i.e., angle of incidence iθ , is 

computed. Using Snell’s law (Eq. (3.4)), the angle of refraction tθ  can then be easily 

obtained (see Figure 3.13a) as: 

1 1

2
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θ −  

=  
 

         (3.4) 

 

 

Figure 3.12: Visualization of the trajectory of a ray traced through a bimodal fibrous medium for 

illustration. The ray is shown in red color. Black lines show the ray changing position when periodic 

boundaries are encountered. Coarse and fine fibers are shown with blue and gray colors, respectively. 
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With these angles available, the absorptive or reflective nature of the fiber to the IR ray is 

computed using Fresnel’s Eq. (3.5) to Eq. (3.8). The reflectivity and transmissivity of the 

interface to the parallel and perpendicular components of an IR ray are given by Eq. (3.5)

, Eq. (3.6), Eq.(3.7), and Eq.(3.8), respectively (Bohren and Huffman, 1983). 
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With the above components computed, the effective reflectivity and transmissivity of the 

interface can be calculated to be the mean values of the squares of parallel and 

perpendicular components 2 2( ) / 2avgρ ρ ρ⊥= +
�

 and 2 2( ) / 2avgt t t⊥= +
�

. Note that these 

mean values should satisfy the relation2 2
1( / )(cos / cos ) 1avg avg 2 t i+t n nρ θ θ = . If a ray 

undergoes a transmittance event, the intensity of the transmitted light is computed using 

Beer’s law, which is given as (Zappe, 2010): 

0
tdI I e α−=           (3.9) 

Here, the value 4 /kα π λ= is given by the imaginary part of the complex refractive 

index, and td is the distance travelled by the energy bundle inside the fiber before it exits 

it from the other side (see Figure 3.13a). Once the direction of the refracted ray inside the 
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fiber is determined, the point where the ray exits the fiber can be obtained, and the 

normal to the fiber at that point can be computed. With this information, one can use 

Snell’s law to determine the angle of the outgoing ray. 

In the MCRT method, a random point of emission 0 0 0( , , )O x y z and the normal 

direction vector [ ]a,b,c  at that point are generated on the surface in consideration (fiber 

or source/sink plate). Note that IR rays can originate from the fibers’ surface as well as 

fiber interior. For the sake of simplicity, only the case where the IR rays to originate from 

the surface of the fibers was considered. Also for simplicity, it was assumed that the rays 

travel outwards to avoid complicated calculations dealing with internal reflections within 

a fiber. Also, when IR radiation encounters the tip of a fiber with a certain angle of 

incidence angle, it undergoes total internal reflections. Such situations are not expected to 

occur too often and so are ignored. With the origin and direction of the ray known, one 

can obtain the equation of the line that describes the ray, as (see Figure 3.13b): 

0 0 0( ) / ( ) / ( ) / x x a  y y b  z z c t− = − = − =       (3.10) 

Let C be any circular fiber having a radius of fr , with any arbitrary location and 

orientation. Let ( )A A AA x , y ,z and ( )B B BB x , y ,z be the centers of the circular ends of the 

fibers, and ( )P P PP x , y ,z be any point on the surface of the cylinder. These points form a 

triangleABP . Assume 1d , 2d , and 3d be the distances between A and B , P and A , and 

P and B , respectively, i.e.: 

2 2 2( ) ( ) ( )1 B A B A B Ad x - x y - y z - z= + +       (3.11) 
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2 2 2( ) ( ) ( )2 P A P A P Ad x - x y - y z - z= + +       (3.12) 

2 2 2( ) ( ) ( )3 B P B P B Pd x - x y - y z - z= + +       (3.13) 

The area of the triangleABP  is given as: 

/ 2r f 1A = r d           (3.14) 

Let ( ) / 21 2 3p = d + d + d be one half of the triangle’s perimeter. Using Heron's formula, 

the area of the triangle can also be found as: 

( )( )( )h 1 2 3A p p - d p - d p - d=        (3.15) 

With Eq. (3.14) and Eq. (3.15) one can obtain an expression for the coordinates of any 

arbitrary point P which lies on the infinitely long cylinder shown in Figure 3.13b, as: 

02 2
r hA - A =            (3.16) 

The distance from the middle point of the fiber axis to any point on the cylinder must be 

finite for the point to lie within the simulation box. Assume for a moment that the point 

P  is at one end of the cylinder, then the distance between points M and P  can be 

considered as: 

2 2 2 2( - ) ( - ) ( - )A M A M A Mq r x x y y z z= + + +       (3.17) 

Now, if point P  is considered to be the intersection point between the cylinder and a ray 

originated from 0 0 0( , , )O x y z with a normalized direction vector[ ]a,b,c , one can describe 

point P  in parametric form as: 

0 0 0( ) / ( ) / ( ) / p x x a  y y b  z z c t− = − = − =       (3.18) 
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With Eq. (3.16) and Eq. (3.18), one can obtain two values for pt each representing 

coordinates of an intersection point between the ray and the cylinder. The distance 

between M and any point P must be less than or equal to q for a particular point 

( )D D DD x , y ,z to be the point of intersection of the ray and the fiber within the simulation 

domain. After the two intersections of a ray and a cylindrical surface ( )D D DD x , y ,z and

( )D D DD x , y ,z′ ′ ′′  are computed, (see Figure 3.13d), the actual intersection point (the one 

on the side facing the ray’s origin) is obtained by picking the intersection point 

( )D D DD x , y ,z  which is located at the shortest distance from the origin of the ray. The 

point ( )D D DD x , y ,z′ ′ ′′ which is located further away from the origin should not be 

considered as the intersection point. This is because a ray entering the fiber undergoes a 

refraction process, thereby changing its direction towards point 0 0 0( , , )O x y z′ ′ ′′  (see Figure 

3.13d).  

The direction vector of the reflected ray is computed by first obtaining the 

coordinates of point ( )Q Q QQ x , y ,z which is the projection of the intersection point onto 

the fiber axis (the coordinates of point ( )Q Q QQ x , y ,z  can be obtained by projecting the 

vectorAD
uuur

 onto the fiber axisAB
uuur

). The normal vector to the fiber surface at the point of 

intersection [ ]x y zn ,n ,n  is then obtained using points Q  andD . The direction of the 

reflected ray can then be calculated using the reflection matrix given by Eq. (3.19). 

2 2

2 2

2 2

2 2 2
x z y x y x z

2 2 2
x y y x z y z

2 2 2
x z y z z y x

-n +n +n - n n - n n

- n n -n +n +n - n n

- n n - n n -n +n +n
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      (3.19) 
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Figure 3.13: Schematic of a ray through a fiber (a); fiber end points (b); ray reflection from a fiber (c); and 

intersections of a ray with the fiber surface (d). 
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When a ray does not intersect with the fibers, it either encounters a periodic boundary or 

reaches the sink (or source) plate. If a ray encounters a periodic boundary, it exits the 

domain at that particular point but reenters from the opposite side of the simulation box 

with the same direction vector. This process is repeated until the ray’s energy reaches a 

negligible value, or it encounters the source/sink boundaries. 

When the intersection of a ray and a fiber is found, a random number tR is 

generated in the closed interval of 0 to 1. If the value of tR is less than the interface 

transmissivity (obtained from Fresnel’s equations), then the ray is transmitted through the 

fiber and emitted with an intensity calculated using the fiber absorptivity from Beer’s 

law. The intensity of the transmitted ray depends on the distance that the ray travels 

inside the fiber td , as well as the value of the imaginary part of the refractive index. The 

origin and direction of the emitted ray is determined using Snell’s Law. On the other 

hand, if the value of the random number tR is greater than the fiber transmissivity, the ray 

is assumed to be reflected specularly. The reminder of the ray tracing procedure is 

described in Section 3.2. 

Two different treatments for the variations of the temperature of a fiber along its 

length were considered. To model a high-conductivity fiber, a single temperature for the 

entire length of the fiber is calculated according to Eq. (3.1). For fibers which are not 

highly conductive, however, a new modeling strategy was developed. In this case, each 

fiber was divided into some number of segments and each segment was treated as an 

individual fiber with a uniform temperature. This increases the number of fibers in the 

domain, and consequently slows down the simulations. However, it allows the fibers to 
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attain a semi-continuous temperature gradient along their lengths. For these calculations, 

rather than dividing the fibers into segments along their axes––the most obvious but yet 

computationally least efficient method––they were sliced in the direction of the imposed 

temperature gradient (i.e., the x-direction). This means that fibers with a greater through-

plane orientation will be divided into a larger number of segments. Obviously, fibers with 

no through-plane orientations, like the fibers in layered media, will not be divided into 

fiber segments (see Figure 3.14). This segmentation algorithm has been motivated based 

on the fact that fibers with a greater through-plane orientation attain a greater temperature 

gradient along their lengths, and so must be divided into a larger number of segments for 

accurate temperature calculations in comparison with fibers with a smaller through-plane 

orientation. In the calculation with such fibers, as a better accuracy is needed, 250 rays 

from each fiber segment were emitted (as opposed to 2500 from the entire fiber). 

 

 

Figure 3.14: A schematic drawing showing the fibers divided into different number of segments depending 

on their position and through-plane orientations. 
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3.3.1 Validation of the Method 

Apart from the validation studies performed for the case of 2-D fibrous media, 

additional validation was performed to ensure the accuracy and reliability of the MCRT 

procedure.In order to validate the view factor calculations in 3-D, a simple 3-D geometry 

of two perpendicular cylinders with a given separation at the centers, as shown in Figure 

3.15 was simulated. An analytical expression exists for this case (Incropera et al., 2006), 

and is shown in the following equations: 

1.610.95 0.16
1 2 0.178( / 2.59) ( / ) exp( 0.537 ln( / ) ) ( / 1)F X L X L X if L X− −
− = − <  (3.20) 

and 

0.8890.95 2.32
1 2 0.178( / 2.59) ( / ) exp(2.024 ln( / ) ) ( / 1)F X L X L X if L X− −
− = >   (3.21) 

where /L l r= , /C c r= , and 2.42 2.24X C= − . With l =200 µm, c = 75 µm, and r =15 

µm. The simulations predict a value of 0.049, which is in perfect agreement with the 

value (0.049) obtained from the above analytical expressions. Note that the periodic 

boundary conditions used in the simulations were turned off when this validation study 

was performed, since the cylinders in this context have a finite length, and the periodic 

boundaries represent infinitely long fibers. 

A series of trial simulations were also conducted to ensure that the results of the 

computations are independent of the number of rays emitted from the source plate or 

fibers. An example of such calculations is shown in Figure 3.16. For these calculations, a 

fibrous structure with a domain size of 500×500×832 µm, an SVF of 5%, and a fiber 

diameter of 20 µm was used. 
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Figure 3.15: A simple configuration considered for validation of view factor calculation in 3-D. 

 

The number of rays emitted from each fiber was varied from 50 up to 2500 and the 

temperature of the fibers was monitored (for a total of 65 fibers in the domain). The fiber 

temperatures obtained by emitting a different number of rays from each fiber are 

compared with those obtained by emitting the maximum number of rays (2500 rays per 

fiber), and shown in Figure 3.16. It can be seen that for any number of rays per fiber 

greater than 250, the calculation error is less than about 2%. Hence 250 rays per fiber 

were used as a default value for the remainder of the simulations presented here. Similar 

studies were conducted for the transmittance values as well (not shown for the sake of 

brevity). They all indicated that emitting 250 rays from the fibers or the source plate leads 

to acceptable results. 

In order to verify the accuracy of the implementation of the physics of geometric 

optics in the code the following analysis was conducted. It is a well-known phenomenon 

that extinction of IR occurs due to the shape of the scattering objects and of course due to 

the material (Bohren and Huffman, 1983). Therefore it is expected that as the SVF of the 
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material increases, the transmittance of the material reaches to a minimum value and then 

starts to increase. 

 

 

Figure 3.16: Effects of number of rays emitted from a high-conductivity fiber on its predicted steady-state 

temperature. 

 

To study this effect of SVF on radiation transmittance of the medium, a modified 
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generated in the domain to resemble the case of fibers with zero in-plane and through-

plane angles (see Figure 3.17). Different simulation domains ware studied starting with a 

minimum SVF of 2.5%. The value of SVF was increased to a SVF of 55% (see Figure 

3.17b) and to further increase the SVF beyond 55% it was assumed that fibers in the 

center of the simulation domain merge to form a bigger fiber see Figure 3.17c. The 
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diameter of the fiber situated at the center was increased until the SVF of the domain 

reached 85%. A hot plate temperature of 800 K and a cold plate temperature of 300 K 

were used. The fibers were assumed to be made of glass and the refractive index was 

obtained from the work of Larkin, 1957. A fiber diameter of 20 µm was used. 

From Figure 3.18 it can be seen that as SVF of the medium increases from 2.5% 

to 100% the transmittance of the medium first decreases and then increases. This can be 

explained based on the fact that after an SVF of 55%, the number of scatters in the 

medium decrease as the SVF increases. The transmittance of the medium at 100% is 

calculated using Beer’s law (Eq. (3.9)) after compensating for the reflection losses of the 

IR due to interaction with the glass surface. The loss of energy due to reflection of light 

from two surfaces of the glass slab is calculated by computing the reflectivity ( gρ ) of the 

glass using the following equation: 

( )
( )

2

1 2
2

1 2

g

n n

n n
ρ

−
=

+
         (3.22) 

Here n1 is the refractive index of the medium from which the IR originates and n2 is the 

refractive index of the medium into which the IR enters. 

To better examine the accuracy of the simulations, the results were compared with 

those obtained from the two-flux model (see Appendix A). The two-flux model treats the 

radiative heat transfer through a participating medium as a 1-D problem in the direction 

of the thickness. 
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Figure 3.17: Simulation domains containing 2-D translucent glass fibers with SVFs of (a) 10%, (b) 55%, 

(c) 65% and (d) 85%. 

 

Radiative heat transfer through fibrous insulation materials was investigated theoretically 

and experimentally by (Larkin, 1957). Transmission measurements were conducted with 

source temperatures varying from 370 to 700 K, while the sink plate was held at the room 

temperature. 
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Figure 3.18: Effect of SVF on the transmittance of the fibrous media made of glass fibers. 

 

The collected data were interpreted in terms of the two-flux approximation 

method for solving the RTE. The materials were assumed to be isotropic and 

homogenous with radiative heat propagating in the forward and backward directions 

only, as described in the two-flux approximation method. Heat flux transmitted through 

the fibrous materials (provided by Owens-Corning Fiberglass Corporation) was measured 

by (Larkin, 1957) and utilized to compute the scattering and absorption cross-sections. 

The materials used in the study included fiberglass types A and B as well as and 

unbounded glass fibers with different diameters such as 2.5, 5, 10, 20 and 35 µm. It is 

worth mentioning that although Larkin (Larkin, 1957) did not investigate the effects of 

impurities on the radiative properties of his media, he observed traces of carbon 

impurities in the glass fibers used in his experiment. Using the two flux model, (Larkin, 

1957) developed an equation for radiative heat flux through fibrous media. 
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Numerical values for M and P are experimentally obtained by (Larkin, 1957) for glass 

fibers with a diameter of 20 µm at a temperature of at 700 K. The value of N is computed 

from Eq. A-5 of Appendix A. Results of this equation, normalized with the total flux 

values emitted by the source plate, are added to Figure 3.19 for comparison. As can be 

seen in this figure, the MCRT method and the two-flux method show similar trends for 

the variations of the radiation transmittance with SVF. More importantly, considering the 

very different nature of the two methods, and the fact that both methods are based on 

series of simplifying assumptions, one can argue that the general agreement between the 

two methods is acceptable. 

 

Figure 3.19: A comparison between transmittance values obtained from current numerical simulations with 

low-conductivity fibers and the two-flux model. The media have a SVF of 5% with 3-D isotropic fiber 

orientations. 
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3.4 Results and Discussion 

Unless otherwise stated, fibers with a diameter of 20 µm were considered (fine 

fiber diameter in the case of bimodal media). The simulations are conducted in domains 

with a thickness of 832 µm and in-plane dimensions of 500 500×  µm. The source and 

sink temperatures are considered to be 850 K and 308 K, respectively. The absorptivity, 

reflectivity, and transmissivity values for each fiber are calculated using Fresnel’s Law 

and Beer’s Law for each fiber–ray interaction. Due to the random media generation 

process, each simulation is repeated at least three times to reduce statistical uncertainties 

in the results presented. 

To study the influence of in-plane and through-plane orientation of the fibers on 

the insulation performance of fibrous materials, a series of fibrous structures with 

identical parameters but different fiber orientations were generated (Figure 1.3). Figure 

3.20a shows the temperature profile across media with different degrees of through-plane 

fiber orientation (structures shown in Figure 1.3a–d). These fibers are assumed to have a 

low conductivity, and therefore, develop a non-uniform temperature profile along their 

lengths. It can be seen that through-plane orientation of the fibers has no significant 

influence on the temperature profile across the thickness of the fibrous structure. 

Increasing the through-plane orientation of the fibers, however, increases the IR 

transmittance through the materials as can be seen in Figure 3.20b. This conclusion is in 

agreement with the work of (Lee, 1989) who used electromagnetic wave theory to predict 

performance of fibrous insulation materials. Note that in calculating the temperature 

profile across the thickness, the domain is divided into a number of slices and the 
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temperature of each slice is obtained by mass-weighted averaging of the temperatures of 

the fiber segments within the slice. For the case of layered media (media with no through-

plane fiber orientation), the layer temperature was taken as the slice temperature. 

The simulation results for media having layered structures (structures shown in 

Figure 1.3) with different in-plane fiber orientations are shown in Figure 3.20c–d. It can 

be seen that the fibers’ in-plane orientation has no influence on the temperature profile 

across the thickness of the media. The transmittance results also show no dependence of 

the in-plane orientation of the fibers. This is also in agreement with the previous results 

by (Lee, 1989). Note that, since fibers in layered structures have no through-plane 

orientations, they attain uniform temperatures along their lengths independent of their 

conductivity values. Interestingly, increasing the fiber conductivity for media with non-

zero through-plane fiber orientations tends to flatten the temperature profile across the 

material’s thickness, leading to a more uniform temperature distribution across the 

thickness (see Figure 3.20e). This effect is negligible when the fibers’ through-plane 

orientation of the fibers is quite small (say, a standard deviation of 15 degrees or less), 

but becomes noticeable through-plane orientation increases. This effect somewhat 

resembles the problem of heat conduction through a solid wall where increasing the 

conductivity of the wall reduces the temperature gradient across the thickness. Figure 

3.20f shows the IR transmittance results for the case of highly conductive fibers with 

different through-plane fiber orientations. Comparing these results with those shown in 

Figure 3.20b, one can conclude that the effect of fiber conductivity on IR transmittance is 

negligibly small. Slightly higher transmittance values (less than 3% higher) from 
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simulations conducted without the high fiber conductivity assumption may be attributed 

to the fact that maximum fiber temperature is slightly higher for this case, and the 

intensity of the heat flux emitted from the fibers (being proportional to the fourth power 

of fiber temperature) is slightly higher. Note again that in the transmittance calculations, 

the energy received by the sink includes the energy emitted from both the fibers and the 

source plate (Boulet et al., 1993). 

To better compare and discuss the differences observed in the results shown in 

Figure 3.20a and 3.20e, the temperature of three arbitrary fibers from within the structure 

were compared (shown with different colors in the inset of Figure 3.21a). The 

comparison is between the fiber temperatures obtained with and without the high-

conductivity assumption for the fibers. For a better illustration, one of the fibers is 

randomly taken from the left side of the domain (near the source plate), one from the 

right side of the domain (near the sink plate), and the third is chosen such that in spans 

across the thickness. It can obviously be seen that with the high-conductivity assumption, 

the fibers have uniform temperatures along their lengths, while the in the absence of such 

an assumption, some temperature gradients are established along the fibers. More 

interestingly, it can be seen that higher maximum temperatures (on the left side of the 

domain) and lower minimum temperatures (on the right side of the domain) are obtained 

when fibers are less conductive, which is in agreement with the results obtained for the 

whole media. For convenience, the temperature profiles shown in Figure 3.20a and 3.20e 

for media with a through-plane standard deviation of 45 degrees were isolated and 

compared them with one another in Figure 3.21b. 
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Figure 3.20: Temperature profiles and transmittance values for media with random in-plane but varying 

through-plane fiber orientations and low fiber conductivity (a and b); zero through-plane but varying in-

plane fiber orientations and arbitrary fiber conductivity (c and d); random in-plane but varying through-

plane fiber orientations and high fiber conductivity (e and f). All structures have an SVF of 5% and a fiber 

diameter of 20 µm. 
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Figure 3.21: a) A comparison between temperature of three fibers shown in red, blue, and green for two 

different fiber conductivity treatments of “low” and “high”. b) Temperature profiles across the thickness of 

media with identical microstructural parameters but different fiber conductivities of “low” and “high”. The 

media shown in this figure have an SVF of 5%, a fiber diameter of 20µm with 3-D isotropic fiber 

orientations. 
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It can be seen that average temperature of the whole media remains almost constant, 

independent of the fiber conductivity, although temperature distribution is more flat with 

high-conductivity fibers. It is worth noting that heat and fluid flow in fibrous structures 

similar to that shown in Figure 1.3e can be studied using 2-D disordered domains, as 

there are no temperature gradients in the direction of the fiber axes. With the heat transfer 

performance of an insulation material being independent of the in-plane orientation of the 

fibers (Figure 3.20c and 3.20d), one can conclude that simulations devised in 2-D 

disordered domains can reliably provide predictions with accuracy equal to those of 3-D 

simulations conducted for layered media, but with easier math and faster CPU times. 

Similar simulations can also be conducted using 2-D ordered geometries. However, in the 

ordered geometries, the thickness of the media has to be a multiple of the thickness of the 

unit cell (see (Arambakam et al., 2011) for more information). 

To study the influence of SVF on heat transmittance and fibers’ temperature, a 

series of media with different SVFs were simulated. Only layered media (shown in 

Figure 1.3h) and media with 3-D isotropic random fiber orientations (shown in Figure 

1.3d), with both high-conductivity and low-conductivity fibers were studied. As 

expected, temperature decreases across the thickness. However, it is interesting to note 

that, as SVF increases, temperature of the fibers closer to the source increases, while that 

of the fibers farther away from the source decreases (see Figure 3.22). The underlying 

physics behind this effect seems to be the fact that, at higher SVFs, fibers closer to the 

source better block the IR rays, thereby shielding the remainder of the fibers. This causes 

these fibers to attain higher temperatures, and those closer to the sink to remain colder.  
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Figure 3.22: Temperature profile and transmittance values for media with varying SVFs for layered 

structures and arbitrary fiber conductivity (a and b); 3-D isotropic structures and high-conductivity fibers (c 

and d); and 3-D isotropic structures and low-conductivity fibers (e and f). 
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From heat transmittance calculations (Figure 3.22b, 3.22d and 3.22f), it can be 

concluded that increasing the SVF results in a decrease in the heat transmittance through 

the media, as there will be more fibers blocking a direct path from the source to the sink. 

As mentioned earlier, a slight increase in transmittance is observed when a low 

conductivity is assumed for the fibers. Note also that the layered media can better block 

the IR transmittance, indicating again that decreasing the through-plane orientation of the 

fibers results in better heat insulation. 

Fibrous materials with bimodal fiber diameter distributions were also studied. For 

the sake of simplicity, fibers are assumed to be either fine or coarse (no actual diameter 

distribution), as shown in Figure 3.12. Additional parameters that must be introduced to 

the simulations are the mass fraction of the fine (or coarse) fibers, and the coarse-to-fine 

fiber-diameter ratio cfR . The fine fiber diameter in all the bimodal simulations is kept 

constant at 20fd = µm. Figure 3.23a shows temperature profiles obtained for media 

having a coarse mass fraction of 0.5 but different cfR . The SVF of the media is kept 

constant at 7.5%, and the fibers have orientations with in-plane and through-plane 

standard deviations of 45 and 15 degrees, respectively (i.e., the structures are almost 

layered). The media are assumed to be made up low-conductivity fibers. As can be seen 

in Figure 3.21a, increasing cfR  results in an effect similar to that caused by reducing the 

SVF in Figure 3.22––reduction of the temperature gradient across the thickness. 

However, the effect of cfR  on the temperature profile seems to be less pronounced than 

that of SVF. This effect can be explained by considering the fact that increasingcfR , 
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when all other microstructural parameters (e.g., SVF) are kept constant, results in fibrous 

geometries with fewer fibers shielding the sink plate. Similar calculations conducted for 

media made up of high-conductivity fibers resulted in less noticeable differences between 

the two cases studied. The transmittance values for the two cases of Rcf equal to 2 and 3 

are found to be 0.610 and 0.625, respectively, indicating a slight increase in transmittance 

with increasing Rcf. Increasing the mass fraction of coarse fibers, when the coarse-to-fine 

fiber-diameter ratio is kept constant, results in a flatter temperature profile across the 

thickness (see Figure 3.23b). A slight increase in the IR transmittance is also observed 

when increasing mc from 0 to 0.5, with the corresponding values of 0.620 and 0.625, 

respectively. The transmittance values for the case of high-conductivity fibers were found 

to be almost 3% lower than the above values for low-conductivity fibers. 

 

3.5 Conclusions for Radiation heat transfer using MCRT 

Most of the studies reported on radiative heat transfer through a fibrous material 

treat the medium as a continuum, with the effects of its microstructural parameters (fiber 

diameter, fiber emissivity, material’s porosity…) lumped together in the form of a series 

of macroscale material coefficients such as an extinction coefficient. The objective of the 

current work was to develop an analytical, and so computationally feasible, simulation 

method to isolate each individual microstructural parameter of a fibrous material, and 

study its influence on the insulation performance of the medium. The current simulations 

were conducted in 3-D disordered fibrous media with unimodal and/or bimodal fiber 

diameter distributions.  
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Figure 3.23: Temperature profile across thickness of bimodal fibrous structures with a mc of 50% but 

different coarse-to-fine fiber diameter ratios (a); media with an identical cfR of 3 but different coarse fiber 

mass fractions (b). The media simulated here have zero-mean in-plane and through-plane fiber orientations 

with standard deviations of 45 and 15 degrees for the in-plane and through-plane fiber orientation 

distributions, respectively. 
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The effects of the fiber conductivity are included in the current radiation modeling by 

considering two different scenarios of high-conductivity or low-conductivity fibers.It was 

found that for media with non-zero through-plane fiber orientations, increasing 

conductivity of the fibers lowers the temperature difference across the media’s thickness. 

The current results indicate that heat flux through a fibrous medium decreases with 

increasing solid volume fraction of the fibers. It was also observed that IR transmittance 

increases with increasing through-plane orientation of the fibers, but is independent of 

their in-plane orientations. The fibers in-plane or though-plane orientations were found to 

have negligible effect on the temperature profile across the media’s thickness unless the 

fibers are highly conductive. The results obtained from simulating bimodal fibrous 

structures indicate that increasing the fiber-diameter dissimilarity, or the mass fraction of 

the coarse fibers, slightly increases the radiation transmittance through the media, and 

accordingly reduces the temperature gradient across the thickness. The simulation results 

are compared with those from the two-flux model and other studies in the literature, and 

good agreement is observed. 
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Chapter 4 A Dual-Scale 3-D Approach for Modeling Radiative Heat 

Transfer in Fibrous Insulations3 

 

4.1 Introduction 

In this chapter, a dual-scale computationally-feasible 3-D method is developed to 

simulate the transfer of radiative heat through fibrous media comprised of fibers with 

different diameters and orientations. The simulations start by generating a virtual fibrous 

material with specified microstructural properties and then compute the radiative 

properties of each fiber (i.e., effective phase function, as well as scattering and absorption 

coefficients) in the structure using the Mie Scattering theory. Considering independent 

scattering formulations for the fibrous media (media with high porosities), the radiative 

properties of the insulation material are computed by summing up the radiative properties 

of each individual fiber, after transforming the phase function values from the fiber's 

local 3-D coordinates system to a fixed global coordinates system. The radiative 

properties of the media are then used in the Radiative Transfer Equation (RTE) equation, 

an integro-differential equation obtained for computing the attenuation and augmentation 

                                                 
3 Contents of this section have been published in an article entitled “Dual-Scale 3-D Approach for 
Modeling Radiative Heat Transfer In Fibrous Insulations”, by R. Arambakam, H.V. Tafreshi, and B. 
Pourdeyhimi, International Journal of Heat and Mass Transfer 64, 1109 (2013). 
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of an InfraRed ray’s energy as it travels through a fibrous medium. Using the Discrete 

Ordinate Method (DOM), the RTE is then discretized into a system of twenty-four 

coupled partial differential equations and solved numerically using the FlexPDE program 

to obtain the amount of heat transfer through the entire thickness of the media.  

 

4.2 Macroscale Formulations 

In order to compute the radiative properties of insulation media, a virtual 

geometry of the media’s microstructure is first generated using an in-house MATLAB 

code. The MATLAB code was developed to generate 3-D simulation domains on the 

basis of the parameters of interest, such as solid volume fraction (SVF), fiber diameter, 

the media’s thickness, in-plane and/or through-plane orientation (Figure 1.3). When 

generating the virtual fibrous structures, careful attention was paid to assure that the 

fibers are located at a certain specified distance from each other, and the distance is 

determined by the clearance parameter (Lee, 1994). The radiative properties of such 

structures can be computed using electromagnetic theory and the radiative heat transfer 

through the material can be predicted using the Radiative Transfer Equation. 

The RTE (Eq. (1.3)), being an integro-differential equation, is hard to solve 

numerically or analytically. However, the Discrete Ordinates Method (DOM) can be 

utilized to simplify and solve the equation numerically. In the DOM method, the integral 

term in the RTE (which is the term describing incident radiation from all the directions) 

is approximated by a weighted sum of intensities scattered in different directions. In the 

current work, DOM equations were considered in three scattering directions in each 
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quadrant (known as the S4 approximation) and are solved using the FlexPDE finite 

element program from FlexPDE Inc. Using the S4 approximation Eq. (1.3) simplifies to a 

system of 24 coupled partial differential equations (3 equations for intensity in each 

quadrant of the simulation domain, see Figure 4.1). The integral term in Eq. (1.3) is 

replaced by a summation term with weight factor w  by using the quadrature formulation 

of Chandrasekhar, 1960. The RTE in DOM can be written as: 

24

14
p p p p p p

p p p p b p p p
p

dI dI dI dI dI dIdx dy dz
A B C I I w I

dS dx dS dy dS dz dx dy dz

σ
β κ

π =

+ + = + + = − + + Φ∑
r rr

 

           (4.1) 

Here pA
r

, pB
r

and pC
r

 are the direction cosines of the incident radiation. The subscript p 

represents the number of angles considered in the DOM. The quadrature weight and 

direction cosines are obtained based on the predetermined directions in the S4 

approximation, for which the intensity field (pI
r

) is to be calculated.  

Eq. (4.1) can numerically be solved using a generic partial differential equation 

solver, subject to the boundary conditions at the source and sink given as: 

,( 0)p b SI x Iε= =          (4.2) 

,( )p b CI x t Iε= =          (4.3) 

where 0x = and x t=  are the locations of the source and sink plates, respectively with a 

value of 1ε =  . The boundary conditions on the lateral sides of the simulation domain are 

symmetry boundary conditions. Note that the choice of symmetry or periodic boundary 
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condition makes no difference for the geometries considered in the study––insulation 

material placed between two infinitely large parallel walls (see Figure 4.2). 

 

 

Figure 4.1: Scattering directions in 3-D for DOM. Radiation is scattered in 24 directions in 3-D space. 

 

This is because temperature gradient is only in the thickness direction making the heat 

flow in lateral directions insignificant. For the same reason, one could also expect that the 

macroscale calculations in 2-D and 3-D results in identical solutions (phase function 

calculations must be in 3-D). Nevertheless, to better emphasize on the generality and 

completeness of the simulation approach all calculation presented in this paper are 

conducted in 3-D domains (see Figure 4.3). 
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Figure 4.2: An example of fibrous media considered in this work. The in-plane and through-plane 

orientation of the fibers are random. 

 

 

Figure 4.3: The simulation domain and its boundary conditions. 
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4.3 Microscale Formulations 

Numerical values forσ ,κ ,β and Φ  can be obtained by computing the extinction 

cross-section Cext, and scattering cross-sections Cscat, which are the effective fiber cross-

sectional areas that encounter a beam of incident radiation and have the unit of area. Φ  is 

the scattering phase function of each individual fiber inside the media, and it gives the 

probability of light incident on the fiber being scattered into any arbitrary direction in 3-D 

space (Howell et al., 2011). 

,
1

1 N

sca f
f
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V

σ
=

= ∑          (4.4) 
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f

C
V

β
=

= ∑          (4.6) 

,

1

1 N
sca f

f

dC

dσ =

Φ =
Ω∑          (4.7) 

These parameters are influenced by the fibers’ through-plane orientation angle, diameter, 

complex refractive index, wavelength of the incident IR, and the refractive index of 

material surrounding the fibers (i.e., air). 

 

4.3.1 Radiative Properties of a Single Fiber 

The equations for the interaction of an IR ray with a fiber are developed in a 

coordinate system with reference to the fiber (Bohren and Huffman, 1983). Therefore, the 

angle with which the IR is incident on the fiber and the direction of the scattered radiation 
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are defined with respect to the fiber (see Figure 4.4a) (Bohren and Huffman, 1983). Since 

different fibers have different orientations, the orientations of the fiber, incident IR and 

scattered IR must be defined in a global coordinate system (see Figure 4.4b) to estimate 

the radiative properties of the insulation medium as a whole. To transform the angles 

from a fixed coordinate system to the material coordinate system Lee has derived a set of 

trigonometric relations (Bohren and Huffman, 1983). The angles defined in terms of the 

fibers’ coordinate system (local coordinate system) can be related to the material’s 

coordinate system (global coordinate system) as (see Figure 4.4 for angle descriptions): 

cos sinC i f s fR R R Rφ φ= = ⋅ = ⋅
r r r r

       (4.8) 

cos i sR Rη = ⋅
r r

          (4.9) 

2

2

cos cos
cos

sin
C

C

η φ
θ

φ
−

=         (4.10) 

The radiation scattered by a fiber propagates along the surface of a cone, and the 

scattering angle (η ) has a maximum possible value for a specified fiber orientation ( fξ ) 

and this maximum scattering angle (maxη ) is given by the following relation. 

maxcosη = ( )( )2min 2cos 1,2 cos cos 1C fφ ξ ξ− −      (4.11) 

For the complete derivation of the above equations the readers are referred to Lee, 1994. 

After the coordinate transformations have been made the radiative parameters of the 

fibrous media are now expressed in terms of angles η  and Cφ (in the global coordinates 

system) rather than in terms of φ  and θ  (in the local coordinates system). However the 

angle η is determined by the directions of the S4 approximation. 
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Figure 4.4: Schematic of a fiber oriented in its local coordinate system (a) and the material’s coordinate 

system (b). 

 

After the virtual fibrous structures are produced, a MATLAB code was developed 

to compute the orientation of the fibers in the domain. As the orientation of each 

individual fiber inside the domain is determined, the corresponding Cφ is computed based 

on the incident IR direction. With this angle computed, all possible directions in which an 

IR ray can be scattered by the fiber can be determined. After these directions are 

obtained, the algorithm checks if any of these possible scattering directions coincide with 
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the pre-defined DOM directions. If it is determined that a fiber with a random orientation 

can scatter in any of the 24 possible DOM directions, then the corresponding phase 

function (Φ ) value is computed using the angle η  (calculated using the above 

transformations). After the value ofη is calculated the corresponding θ is computed and 

used for calculating the radiative properties of the fiber. This procedure is repeated for all 

the fibers in the virtual microstructure. 

The scattering cross-section of a fiber for parallel and perpendicularly polarized 

electric components of incident IR is given as: 

( )
max

2 2 2

, 0
1

2
2

n
f

sca n n
n

d
C b b a

xΙ Ι Ι Ι
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 
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Similarly the extinction cross-section of a fiber for parallel and perpendicularly polarized 

electric components of incident IR is given as: 
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After the scattering and absorption cross-sections are known an absorption cross-section 

can be computed using the following equations: 

, , ,abs ext scaC C CΙ Ι Ι= −           (4.16) 

, , ,abs ext scaC C CΙΙ ΙΙ ΙΙ= −           (4.17) 
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The differential scattering cross-section ( /scadC dΩ ), which is used for computing the 

phase function, is obtained from the following equations: 

, 2
12 2

4

sin sin
sca I

C

dC
T

d

λ
π θ φ

=
Ω

         (4.18) 

, 2
22 2
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π θ φ
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        (4.19) 

,,1

2
sca IIsca Isca

dCdCdC

d d d

 
= + Ω Ω Ω 

        (4.20) 

The differential scattering cross-section is the energy scattered per unit time into a unit 

solid angle along a directionΩ , which is specified by the angles θ  and maxη for unit 

incident irradiance (Bohren and Huffman, 1983). After the values of scattering, extinction 

and absorption cross-sections of each fiber for the two incident IR polarizations are 

computed, the average values of each of the cross-sections are calculated. These average 

values are used in the calculations shown in Eq. (4.4) – Eq. (4.7). The values foraΙ , bΙ , 

aΙΙ , bΙΙ , T1 and T2 are computed using the electromagnetic wave theory (see the 

Appendix for the formulations and Figure 4.4b for complete description of the angles θ , 

η and Cφ ). It is important to note that the upper limit for the summations (nmax) in the 

above equations (Eq. (4.12) – Eq.(4.15)) are determined by the diameter of the fibers and 

the wavelength of the IR ray which are related by Eq. (4.21) (Bohren and Huffman, 

1983). 

1

3
max 4 2n x x= + +           (4.21) 
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Note that the length of the summation is directly proportional to the fiber diameter and 

inversely proportional to the wavelength of the IR ray. 

After the microscale radiative properties of the fibrous media are obtained, the 

RTE (macroscale) is solved numerically using the FlexPDE software. Solution of the 

RTE yields the distribution of intensity in each direction of the utilized DOM 

approximation (S4 in the present study). A sample contour plot of the intensity 

distribution in an insulation medium with a fiber diameter of 7µm, 3-D isotropic fiber 

orientation, SVF of 0.5%, and a thickness of 1.2 cm is shown in Figure 4.5. 

 

4.3.2 Validation 

For the finite element calculations (solution of the RTE), the simulation domains 

were meshed using 16,000–25,000 tetrahedron cells (see Figure 4.3). A series of trial 

simulations were conducted prior to collecting simulation data to ensure that results are 

not affected by the choice of mesh size. 

 

 

Figure 4.5: An example of the intensity contour plots obtained from the macroscale simulations. 
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To verify the accuracy of the analytical results, the phase function values obtained 

from current calculations for a medium with a fiber diameter of 1 µm, a through-plane 

and in-plane fiber orientations of 5 and 45 degrees, respectively, are compared with those 

reported in (Lee, 1994) (note that the phase function is independent of SVF and thickness 

of the insulation material) (Lee, 1990). Good general agreement between the two works 

is evident (Figure 4.6a), which allows one to extend the current method to compute the 

radiative properties of media with different microstructural parameters. 

In Figure 4.6b the transmittance results from the current simulations are compared 

to the semi-empirical transmittance values obtained by Houston and Korpela for 

fiberglass insulations with an SVF of 0.33%, a mean fiber diameter of 7.45 µm, and a 

thickness of 3.8 cm (Houston and Korpela, 1982). In their work, the authors analytically 

calculated the flux of conductive heat through their media. The heat flux through their 

media was also measured experimentally, which includes the contribution of both the 

conduction and radiation. The heat flux results of Houston and Korpela are shown in 

Appendix B for reference. Subtracting the theoretically calculated conduction heat flux 

from their experimental data, an estimate of the transmitted radiative heat flux values 

were obtained and normalized by the incident radiation heat flux values to obtain the 

values of τ  for comparison with the current simulation results (Figure 4.6b). To generate 

these simulation results, virtual fibrous structures as close as possible to the actual 

fiberglass media used in the experiments reported in (Houston and Korpela, 1982) were 

produced (the through-plane and in-plane fiber orientations were estimated to be about 15 

and 45 degrees, respectively, for the lack more accurate information). The refractive 
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index data for the temperature range used in the currents simulations was obtained from 

the work of Hsieh and Su, 1979 (see Appendix C for the values). From Figure 4.6b it can 

be seen that the current simulations produce results with reasonable agreement with the 

results reported in (Houston and Korpela, 1982). 

 

4.4 Results and Discussion 

A thorough parameter study is conducted in this work to study the influence of 

different microstructural parameters on heat insulation performance of a fibrous material. 

Unless otherwise stated, fibers with a diameter of 7 µm were used throughout this study. 

The simulations are conducted in domains with a thickness of 12 mm and in-plane 

dimensions of 5 5×  mm. The source and sink temperatures are considered to be 479 K 

and 300K, respectively. The absorption coefficient, scattering coefficient and the phase 

function for the media are computed using the Mie scattering theory. 

To study the influence of fiber diameter on insulation performance of fibrous 

materials, a series of fibrous structures with identical parameters but different fiber 

diameters were generated. Fibers in these structures are allowed to have 3-D isotropic 

orientations. It can be seen in Figure 4.7a that as fiber diameter increases from 0.75 µm to 

20 µm the heat transmittance first decreases and then starts to increase. Similar 

conclusions were made in the work of Larkin and Churchill (1959). However, the optimal 

fiber diameter at which best radiation insulation can be achieved depends on the 

application temperature, and has not been quantified previously. It can be seen from 
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Figure 4.7b that as the operating temperature increases from about 410 K to about 725 K, 

the optimal fiber diameter decreases from about 10µm to about 3µm. 

 

 

Figure 4.6: a) Comparison between the current phase function (,mλΦ ) calculations and those of Lee, 1989 

for a single fiber. b) comparison between transmittance values obtained from current simulations and those 

reported in Houston and Korpela, 1982. 

300 320 340 360 380 400
temperature (K)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

τ

Houston and Korpela (1982)
current simulations

df=7.45µm
SVF=0.33%

thickness=3.8 cm
through-plane std. dev. = 15 degrees

in-plane std. dev. = 45 degrees

b)

a)

0 50 100 150
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

observation angle, θ (deg.)

lo
g 1

0( Φ
λ
)

 

 

current simulation
Lee (1990)

a)

df=1µm
wavelength=1µm

through-plane std. dev. = 5 degrees
in-plane std. dev. = 45 degrees



www.manaraa.com

95 

 

Figure 4.7: a) Transmittance values for media with different fiber diameters at different operating 

temperatures, b) optimal fiber diameter as a function of temperature. The structures are 3-D isotropic with 

an SVF of 0.5% and a thickness of 1.2 cm. 
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To study the influence of fibers’ through-plane orientation on the performance of 

insulation media, a series of fibrous structures with identical parameters but different 

fiber orientations were generated, and their performance at a temperature of 479 K 

(chosen arbitrarily) was computed. In these structures, fibers were allowed to have 

random in-plane orientations, but their through-plane orientations are controlled. These 

fibers have a zero mean through-plane orientation, but the standard deviation about this 

mean value varies from 0 to 45 degrees. Note that a standard deviation of 45 degrees 

represents a random through-plane orientation. Structures with random in-plane and 

through-plane orientations are referred to as three-dimensionally isotropic. 

Figure 4.8a shows the transmittance through the media with different through-

plane fiber orientations. It can be seen that as through-plane orientation of the fibers 

increases from 0 to 45 degree, the transmittance through the material increases by about 

40%. Therefore, one can conclude that media with small through-plane fiber orientations 

are better insulators. This conclusion is also in agreement with the predictions of the 

MCRT simulations conducted for media made of micron-sized fibers as well as the 

results of Lee and coworkers (Lee, 1989 and 1990). 

To further investigate if the optimal fiber diameter reported in Figure 4.7 is 

affected by the orientation of the fibers, a series of simulations for materials with 

different fiber diameters and orientations at a fixed temperature of 479 K were conducted 

(see Figure 4.8b). It can be seen that the optimal fiber diameter at a given temperature is 

not affected by the fiber orientation. The best radiation insulation is obtained when the 

through-plane fiber orientation is zero. 
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Figure 4.8: a) Effect of varying through-plane fiber orientations on IR transmittance, b) effects of fiber 

orientation on transmittance for fibers with different diameters. The media simulated here have random in-

plane fiber orientations but varied through-plane orientations. A fiber diameter of 7 µm, an SVF of 0.5%, 

and a thickness of 1.2 cm were considered. 
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the structures were allowed to have random isotropic orientations. It can be seen from 

Figure 4.9 that as SVF increases the heat transmittance decreases. This is due to the fact 

that value of the extinction coefficient of the media increases with SVF. In Figure 4.9 the 

investigation of the effect of thickness on heat insulation can be seen. For these results, 

SVF, fiber diameter and fiber orientation were held constant and the thickness of the 

material was varied from 1 mm to 12 mm. It can be seen that radiation transmittance 

decreases as thickness increases. Note that SVF and thickness will not influence the 

optimal fiber diameter (Figure 4.7) due to the fact that the equations used for computing 

the radiative properties of the fibers (Eq. (4.4)– Eq. (4.20)) do not depend on SVF or 

thickness.  

 

4.5 Comparison of transmittance values obtained from MCRT and RTE methods 

To compare the dual-scale modeling approach for calculating radiation heat 

transfer with the MCRT method, the fibrous structures used for MCRT calculations in 

Figure 3.19 and Figure 3.20f were considered. The dual-scale approach was used to 

compute the radiation transmittance through these structures. The same value of 

refractive index which was used for the MCRT study was used here. Figure 4.10 shows a 

comparison of transmittance values obtained using MCRT and the dual-scale approach. 

In Figure 4.10a variation of transmittance with SVF is presented and can be seen that the 

two approaches show a very good agreement. For the sake of completeness, in Figure 

4.10b the variation of transmittance with through-plane orientation is presented and a 
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good agreement can be observed. However it can be noted in both these comparisons the 

values of transmittance computed using the dual-scale approach are higher. 

 

 

Figure 4.9: Transmittance values for media with varying SVF and thickness having 3-D isotropic 

structures. The fiber diameter is 7 µm. 
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Figure 4.10: Comparison of transmittance values calculated using MCRT and dual-scale approach for 

media with varying (a) SVF and (b) through-plane orientations. 
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becomes inaccurate for fibers comparable in size to the wavelength of the IR radiation. 

The advantages of the electromagnetic wave theory it is computationally less expensive 

compared to MCRT. Wide range of fiber diameters can be simulated as the temperature 

does not limit the lowest possible fiber diameter. However this method has its 

shortcomings too. It requires solving the RTE–an integro-differential equation. 

Complicated math is involved in the calculation of the radiative properties. The accuracy 

of the method depends on the numerical procedure used to discretize and solve the RTE. 

Fiber geometry is limited to cylindrical or maybe at most elliptical fibers and the 

scattering directions need to be approximated for solving the RTE. 

 

4.6 Conclusions for Dual-Scale Modeling Approach 

A dual-scale approach is developed in this work to predict how different fibrous 

structures perform as insulation media in a quantitative manner. The dual-scale nature of 

the method presented here allows one to devise computationally-feasible simulations for 

media made up of thousands of fibers (i.e., the actual thickness of the material). This 

methodology can be adopted for design and development of insulation materials for 

different applications. 

The parameter study revealed that for media with different microstructural 

properties, increasing SVF, thickness, or fibers’ through-plane orientation, increases the 

amount of radiation heat transfer through insulation. Moreover, it was found, and 

quantified, that there exists a fiber diameter for which heat transfer through a fibrous 
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media is minimal. For glass fibers in a temperature range of about 340 to 750 K, best 

insulation performance was with fibers having a diameter of about 3 to 10 µm. 
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Chapter 5 Heat Transfer in Multi-Component Fibrous Insulations4 

 

5.1 Introduction 

Heat generally transfers across a medium via a combination of conduction, 

convection, and radiation. As mentioned earlier in Chapter 1, heat transfer via convection 

is often negligible in a typical fibrous insulation. Unlike convection, conduction is an 

important contributor in the total heat transfer across a fibrous insulation, and has been 

extensively studied in the past decades. Numerous analytical (e.g., Bankvall, 1973; 

Bhattacharya, 1980; Furmanski, 1991) and experimental (e.g., Cunnington and Lee, 1996 

and Zhang et al., 2008) studies have been conducted to define a thermal conductivity for 

the combined solid and the fluid (interstitial phase) conductivities in a fibrous insulation. 

Fortunately, for high-porosity insulation media with air as the interstitial fluid, the 

analysis is quite simple, as the contribution of the solid phase in the overall heat 

conduction is often non-existent. However, if the thermal conductivity of the fibers’ 

material is high in comparison to that of air (e.g., steel or aluminum fibers in air), or if the 

porosity of the media is not high enough, then the properties of the solid fibrous structure 

                                                 
4 Contents of this section have been submitted to a journal for publication as an article titled “Modeling 
Performance of Multi-Component Fibrous Insulations against Conductive and Radiative Heat Transfer”, by 
R. Arambakam, H.V. Tafreshi, and B. Pourdeyhimi, International Journal of Heat and Mass Transfer. 
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(e.g., fiber diameter, fibers in-plane or through-plane orientations etc.) should be 

considered in the analysis. See Chapter 2 for the complete description of the technique. 

In contrast to conduction and convection, estimating the contribution of radiative 

heat transfer in heat transfer through a fibrous insulation is not straightforward. This is 

because radiative properties of a fibrous medium (e.g., scattering phase function, 

absorption cross section, or scattering cross section) strongly depend on both the 

geometry and the material of the fibers. These properties are nonlinear functions of 

temperature and are very different for fibers of identical geometry but made of different 

parent materials, for instance. Figure 5.1 shows a comparison between refractive index 

values for copper (Brewster, 1992), glass (Hsieh and Su, 1979), and mineral wool 

(Ljungdhal et al., 1991) as a function of temperature. 

 

 

Figure 5.1: Refractive indices of copper, glass and mineral wool at different temperatures. 
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The most traditional method to predict performance of a fibrous insulation treats 

radiation heat transfer in a porous medium as a diffusion process. In this method, a 

radiation thermal conductivity using the Rosseland approximation is defined and used in 

conjunction with the thermal conductivity of the material to estimate its insulation 

performance (Tong and Tien, 1980). On a parallel track, radiative heat transfer in a 

fibrous medium has also been studied using the Radiative Transfer Equation (RTE) (Eq. 

(4.1)), which is a mathematical representation of the conservation of energy written for 

an IR beam that travels in a given direction. RTE tallies the change in the beam’s energy 

due to absorption and scattering in different directions along its path. Obviously, the 

radiative properties of the media must be known before the RTE can be solved. Extensive 

research has been carried out to calculate these radiative properties using the theory of 

electromagnetic waves (see e.g., Bohren and Huffman, 1983; Lee, 1989, 1990 and 1994). 

As the RTE is a complicated integro-differential equation, it can only be solved via 

approximate methods. The Discrete Ordinates Method (DOM), for instance, has been 

widely used to replace the integral term in the RTE with a summation. The DOM 

converts the RTE to a set of coupled differential equations which can be solved 

numerically (Chandrasekhar, 1960). 

In this regard, a simulation technique was developed where an accurate RTE 

solution via the DOM’s S4 approximation has been obtained for insulation media as thick 

as several centimeters or more, without excessive computational requirements (see 

Chapter 4). The flexibility of this computational method allows us to investigate 

insulation performance of media made up of fibers with materials and diameters, as will 



www.manaraa.com

106 

be seen later. A special attribute of the simulation method developed in this work, is that 

it can easily be utilized to predict the insulation performance of media made up of fibers 

from different materials, orientations and diameters. It can also be used to simulate the 

effect of blending dissimilar fibers or layering them over each other, among many others. 

Such a capability can be of great interest for design and development of new insulation 

products where a combination of fibers with different dimensions or material are used to 

perhaps improve the mechanical strength of the fibrous structure, among many other 

properties. 

 

5.2 Combining Conduction and Radiation 

Once the conduction (Chapter 2) and radiation components (Chapter 4) of the heat 

fluxes across an insulation is obtained (see previous sections), one can obtain a total 

conduction–radiation thermal conductivity to be used in for the media assuming that 

media’s resistance to conduction and radiation act like resistors in a parallel configuration 

(see Figure 5.2). Therefore, the total resistance to heat flow can be obtained as: 

1
1 1

total
cond rad

R A
R R

−
 

= + 
 

        (5.1) 

where cond
eff

L
R

k A
= and h c

rad
rad

T T
R

q A

−
=

′′
are thermal resistance to conductive and radiative 

heat flows, respectively. The radiation flux values are obtained from the simulation 

technique outlined in Chapter 4. The total heat flux can be computed using Fourier’s law 

of heat transfer that is rewritten in terms of the above total thermal resistances as: 
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cond rad
total

T
q

R+

∆
′′ =          (5.2) 

 

 

Figure 5.2: Schematic of the thermal resistance model considered here. 
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information about the fiber in-plane/through-plane orientations, we assumed that the 

media tested by Houston and Korpela had perhaps relatively planar structures with 

random in-plane fiber orientation distribution. We therefore used standard deviations of 

45 and 15 degrees about zero mean values for the in-plane and through-plane orientations 

of the fibers. The refractive index data for the temperature range shown in Figure 5.3 was 

obtained from the work of Hsieh and Su, 1979. For the simulation results shown in 

Figure 5.3, we considered air conductivity values at an average temperature of the source 

and sink (i.e., for a sink temperature of 285 K and source temperatures of 309 K, 337 K, 

365 K, and 393 K we used air conductivity values of 0.0262, 0.0273, 0.0282, and 0.0292 

W/m-K, respectively) (Incropera et al., 2006). For glass fibers a conductivity value of 1.5 

W/m-K was used. We combined the contributions of conduction and radiation (obtained 

from our simulations) as discussed in Section 5.2. Good agreement can be observed 

between our numerical results and the experimental data of Houston and Korpela, 1982. 

 

5.3.1 Fiber Material versus Fiber Diameter 

As discussed earlier (see Figure 5.1), radiative properties of a fiber are greatly 

influenced by its material. In this sub-section, we compare insulation performance of 

media made of either mineral wool or glass with different fiber diameters. For this 

comparison, we generated a series of single-component fibrous structures with identical 

parameters but made different fiber diameters. Fibers in these structures have 3-D 

isotropic orientations. A thickness of 12 mm is considered for the insulations. The in-
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plane dimensions of the simulation domain are considered to be 5 5×  mm. The source 

and sink temperatures are considered to be 479 K and 300K, respectively. 

 

 

Figure 5.3: Comparison between the experimental thermal resistance values of Houston and Korpela, 1982 

and our simulations. 
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glass and Ljungdahl et al. for mineral wool) at the source temperature (479 K), because 

of the 4th power dependence of radiative transfer on temperature (i.e., hot surfaces 

making a stronger contribution to the total radiative heat). 

In Figure 5.4b, the radiation (Rrad) and conduction (Rcond) thermal resistance 

values for the cases shown in Figure 5a are presented separately for better comparison. It 

can be seen from this figure that resistance to radiative heat is higher than that against 

conductive heat when the media is made of small fibers, especially for mineral wool. 

Resistance to conduction and radiation are almost equal for media with a fiber diameter 

of about 10µm (for the structural and thermal conditions considered here). Media with 

larger fiber diameters tend to block radiative heat much less effectively as can be seen in 

Figure 5.4b. 

 

5.3.2 Insulations with Dissimilar Fibers 

In this section, the influence of fiber dissimilarity, both in terms of diameter and 

material, on insulation performance of composite fibrous media is studied. A total 

thickness of 12 mm is considered for the virtual insulation media (spacing between the 

source and sink walls). A total SVF of 1%tα =  for the whole media was also assumed. 

Similarly, in-plane dimensions of 5 5×  mm are as well as source and sink temperatures 

of 479 K and 300 K, respectively, are considered for the simulations.  
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Figure 5.4: Thermal resistance values for media with different fiber diameters and materials for source and 

sink temperatures of 479 and 300 K, respectively (a) and their individual radiation and conduction 

components (b). 

 

 

0 5 10 15 20
fiber diameter (µm)

0.05

0.1

0.15

0.2

0.25

R
to

ta
l(

m
2 K

/W
)

mineral wool
glass

a)

t                    α =0.5%

      thickness=1.2 cm

         unimodalmedia

3-D random isotropic

0 5 10 15 20
fiber diameter (µm)

0

0.2

0.4

0.6

0.8

1

R
(m

2 K
/W

)

Rcond

Rrad (mineral wool)
Rrad (glass)

b)

t                    α =0.5%

      thickness=1.2 cm

         unimodalmedia

3-D random isotropic



www.manaraa.com

112 

5.3.2.1  Media with Bimodal Diameter Distributions of Same Material 

In simulating blended media with bimodal fiber diameter distribution (see Figure 

5.5) made of same material, we considered the fine fibers with a diameter of 5 and 7 µm 

for media made of mineral wool and glass fibers, respectively. Figure 5.6 shows the 

effect of cfR  on the total thermal resistance of the bimodal fibrous media. A blend 

configuration for media with two different through-plane fiber orientations (zero-mean 

through-plane orientations with standard deviations of 15 and 45 degrees) is simulated. 

In constructing the virtual fibrous insulations, we considered a coarse-fiber mass 

fraction value of 75% and total SVF of 1%tα = . It can be seen in Figure 5.6a that 

increasing cfR  while keeping all other parameters constant, decreases the total thermal 

resistance of the media. This effect can be explained by considering the information 

shown in Figure 5.4: when the total SVF is held constant, media with higher cfR have less 

number of 5 µm fibers (fibers which are very efficient in blocking radiative heat). 

Although not shown in Figure 5.6a for the sake of brevity, we in fact simulated multi-

component media having coarse fibers as thick as 50 µm ( cfR =10), to mimic insulation 

media for which mechanical stability of the fibrous structure is important. A thermal 

resistance value of totalR = 0.18 was obtained from the simulations with fibers having a 

through-plane standard deviation of 15 degrees, indicating again that the insulation 

performance of a medium is mostly determined by the number of most efficient fibers 

(i.e., the 5 µm fibers here) in the media. 
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Figure 5.5: An example of the virtual fibrous structures produced in this study (a) and its finite element 

simulation domain (b). The medium shown here has a zero mean through-plane orientation with a 15-

degree standard deviation. 
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diameter of 2 µm and varied cfR  in Figure 5.6b. It can be seen that thermal resistance 

slowly increase until 3cfR ≅  and then starts to decrease. This trend is again attributed to 

the optimal fiber diameter for mineral wool being 5µm (see Figure 5.4). Here, we have 

also considered media with different through-plane fiber orientations to investigate if the 

fiber orientation affects the above conclusions. As can be seen in Figure 5.6, fibrous 

structures with smaller through-plane orientation are better at insulating heat transfer. 

However, the above conclusions are not affected by the in-plane orientation of the fibers.  

For the completeness of the study, we have also compared the effects of 

separating fibers of different diameters into layers stacked on top of each other instead of 

homogenously blending them across the thickness. Figure 5.7shows the fibrous medium 

and finite element simulation domain considered for our layered-media simulations 

(compare with that in Figure 5.5). For modeling layered insulations, we solve the RTE 

for each separate layer, and use their layer-specific radiative properties ( , ,κ σ β  and Φ  ). 

Boundary conditions similar to those specified in Equations (5.3) and (5.4) are used at the 

source and sink boundaries. At the interface between the two layers, the radiation 

intensity and its derivatives are considered to be identical for both layers: 

( ) ( )
intf intf

, , , , , ,p c c c c p f f f fI Iσ κ β σ κ βΦ = Φ      (5.3) 

( ) ( )
intf intf

, , ,, , , p f f f fp c c c c
dIdI

d d

σ κ βσ κ β

ϕ ϕ

ΦΦ
=       (5.4) 

where ϕ  here represents any of the three Cartesian coordinate system directions. 
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Figure 5.6: Thermal resistance values for media made of mineral wool fibers of different diameters with a 

constant mc of 0.75 in the blended configuration with a fine fiber diameter of 5 µm (a) and 2 µm (b). 
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fiber layer thicknesses of 3 mm and 9 mm respectively, but different SVFs for the coarse-

fiber layer leading to different coarse-fiber mass fractions. Note that in this case the total 

SVF of the media will not remain constant. We held the coarse-to-fine fiber diameter 

constant at 3cfR = with a fine fiber diameter of 5 µm. The media considered here have 3-

D isotropic fiber orientations. It can be seen from Figure 5.8 that total thermal resistance 

of the media increases as SVF of the coarse-fiber layer increases from 0.25%cα = to

1%cα = . This is simply because increasing cα  increases the total SVF tα  of the media. 

 

Figure 5.7: An example of the layered fibrous structures produced in this study (a) and its finite element 

simulation domain (b). The medium shown here has a zero mean through-plane orientation with a 15-

degree standard deviation. 

, ,c c cσ κ Φ
, ,f f fσ κ Φ
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To further explore the effects of increasing the mass fraction of the coarse fibers 

(for instance), we blended the coarse and fine fibers in the above layered media (Figure 

5.7a) and repeated the simulations, while maintaining all other parameters the same. 

These results are also added to Figure 5.8 for comparison. From this figure it can be seen 

that blended or layered configurations of fibers exhibit almost identical heat insulation 

performance. This can be explained by the fact that the equations used for the calculation 

of the radiative properties of the media are not a function of fiber position (Bohren and 

Huffman, 1983). We also reversed the position of the fine and coarse fiber layers with 

respect to the heat source and observed similar thermal resistance values indicating that 

the order by which the layers of different properties are stacked next to one another does 

not influence the steady state performance of the media. This result is in agreement with 

the work of Tian et al., 2012. 

 

5.3.2.2 Media with Bimodal Diameter Distributions from Different Materials 

In this section, we consider bimodal media made up of blends of fibers from 

different materials (glass and mineral wool). As mentioned earlier thermal resistance of 

glass and mineral wool fibers are very different at an operating temperature of about 479 

K (see Figure 5.4). Here we consider bimodal media with the fine fibers made of mineral 

wool with a diameter of 5µm and the coarse fibers made of glass. In Figure 5.9, we vary 

the coarse-to-fine fiber diameter cfR from 1 to 5 while keeping cm at 50%. From this 

figure, it can be seen that as the cfR increases the thermal resistance of the material 

decreases. 
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Figure 5.8: Thermal resistance values for media made of mineral wool fibers with different coarse-fiber 

mass fractions  but a constant Rcf of 3 in the blended and layered configurations with a fine fiber diameter 

of 5 µm. The coarse-fiber solid volume fraction cα  changes with changingcm . 

 

Again, referring to Figure 5.4, it can be seen that mineral wool fibers with a diameter of 

5µm are better insulators compared to glass fibers of any other diameter ranging from 5 

to 25µm. 

 

5.4 Conclusions for modeling heat transfer in multi-component fibrous insulations 

The study presented here demonstrates the possibility of developing 3-D 

geometries resembling the microstructure of a fibrous insulation to be used in simulating 
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value to manufacturers of fibrous insulations in reducing the cost of design and 

optimization of new insulation materials. Our simulation method is designed for high-

porosity insulation media with air as the interstitial fluid conduction where conduction 

through the solid structure is minimal. 

 

 

Figure 5.9: Thermal resistance values of bimodal blend media with a fine fiber diameter of 5µm, a coarse-

fiber mass fraction of 0.5, and different Rcf values. The fine and coarse fibers are mineral wool and glass 

fibers, respectively. 
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insulation media by solving the RTE–DOM equations. The novelty of the simulation 

method presented here is that it is well suited for custom-design of insulation media for 

different applications. 

From the parameter study conducted here, it was concluded that materials with 

glass or mineral wool fibers offer maximum thermal resistance when comprised of fibers 

with a diameter of about 5–7µm (for a source temperature of 479 K). It was also found 

that layered and blended fibrous multi-component insulations exhibit similar 

performance. It was also found that the stacking sequence does not affect the thermal 

resistance of layered media, in agreement with previous studies (Tien et al. 2012). 
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Chapter 6 Overall Conclusions and Future Work 

 

In this work, the effect of materials’ microstructure on the performance of fibrous 

heat insulation was investigated. Heat transfer via conduction was investigated using a 

computational technique developed by us which enables one to drastically reduce the 

computational size of the simulation domain (Chapter 2). Radiation heat transfer, on the 

other hand, was investigated using the Monte Carlo Ray Tracing technique and also via 

solution of the Radiative Transfer Equation (Chapters 3 and 4). In Chapter 5, the 

simulation techniques developed in Chapters 2–4 were combined to predict the thermal 

resistance of multi-component fibrous insulation materials. The simulation techniques 

developed in this dissertation allow one to computationally predict the insulation 

performance of materials made up of different combinations of fibers with different 

materials or dimensions. Such a capability can be of great interest for design and 

optimization of new insulation products. 

 

The following conclusions can be drawn from the study conducted here: 

• Heat conduction through the solid fibrous structures increases by increasing the 

material’s solid volume fraction, fiber diameter, and fibers’ through-plane 
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orientations. The in-plane orientation of the fibers, on the other hand, did not 

show any significant influence on the material’s conductivity.  

• It was also observed that the microstructural parameters of fibrous insulations 

have negligible influence on the material’s performance if the conductivity of the 

solid phase is close to that of the interstitial fluid. 

• From the radiation heat transfer simulations it was observed that IR transmittance 

through the media increases with increasing through-plane orientation of the 

fibers, but is independent of their in-plane orientations. 

• With regard to the role of fiber diameter, it was found that there exists a fiber 

diameter for which heat transfer through a fibrous media is minimal, ranging 

between 3 to 10 µm for glass fibers operating in a temperature range of about 

400–750 K. For mineral wool fibers, this optimal fiber diameter at a temperature 

of 479 K was observed to be 5 µm. 

• Increasing the fiber diameter dissimilarity affects the thermal insulation capability 

of a material. It is obvious from the above conclusion that if the material consists 

of a greater number of fibers with the optimal fiber diameter, the material is a 

good insulator. 

• The contribution of conduction and radiation heat transfer to the total heat transfer 

through the insulation material depends on its fiber diameter, through-plane 

orientation, SVF and thickness. 
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From the parameter study conducted here, the following are recommendations for 

designing optimal heat insulation: 

 

Table 6.1: Recommendations for optimal insulation design 

increasing radiation conduction 
design 

recommendation 

solid volume 
fraction 

decrease increase find the optimum 

fiber diameter 
has a unique 
optimal value 

increases find the optimum 

in-plane orientation no effect no effect does not matter 

through-plane 
orientation 

increase increase 
reduce the through-
plane orientation 

fiber dissimilarity 
fiber diameter 

dependent 
increases 

find optimum 
blend 

fiber-to-fiber 
contact 

no effect increases 
reduce fiber-to-

fiber contact 

 

 

There are several topics of research arising from this work which could be pursued: 

• This work can directly be extended to study effects of different fiber cross-

sectional shapes on the heat insulation performance of the materials. 

• In this study refractive index of the fiber material is obtained at the source 

temperature. However a more accurate prediction of radiation heat transfer can be 

made if the fiber refractive index is obtained for the fiber temperature and hence 

should be explored. 
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• The interstitial fluid in the current simulations is assumed to be vacuum or air. 

This method can also be extended to cases where a binder is used as the 

interstitial phase. 

• Another assumption made in this work was the independent scattering 

assumption. An approach relaxing this assumption is based on including the 

effects of dependent scattering. This work can be extended to predicting 

insulation performance of denser fibrous insulations when dependent scattering 

effects are included. 

• This work can also be extended to conduct a transient study on heat transfer in 

insulation materials. The time dependent effects of conduction and radiation on 

the heat insulation can be studied. This is especially important for problems like 

shuttle re-entry. 

• The current simulation approach can also be modified to model media with 

crimped fibers 
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Appendix A5 

Two Flux Model 

 

In the two flux model, it is assumed that rays scatter only in the forward and 

backward directions. The fraction of the energy in the forward and backward directions 

are represented by eF  and eB , respectively, with the condition that 1e eF B+ = . Let 1iλ  and 

2iλ  represent the monochromatic radiant flux towards the sink and the source plates, 

respectively. If n  represents the number of scattering bodies (fibers here) per unit 

volume, then the rate of change of 1iλ in the direction x is given as: 

1
1 1 2( ) ( )S a e S e S f

di
n S S i nF S i nB S i n A g T

dx
λ

λ λ λ λ λ λ λ λ λ λ λε= − + + + +    (A-1) 

where λ is the wavelength, A is the emitting area of a fiber in the insulation, λε  is the 

emissivity, and ( , )g Tλ λ is the Planck’s radiation function, which provides the energy 

radiated at each wave length for a body. The scattering and absorption cross sections are 

shown by SS  and aS . Scattering (or absorption) cross section is defined as the fraction of 

energy scattered (or absorbed) from a beam carrying a unit of energy per unit area normal 

to the direction of propagation. Integrating Eq. A-1 over all wavelengths, using the 

                                                 
5 Contents of this appendix have been published in an article entitled “Analytical Monte Carlo Ray Tracing 
simulation of radiative heat transfer through bimodal fibrous insulations with translucent fibers”, by R. 
Arambakam, H.V. Tafreshi, and B. Pourdeyhimi, International Journal of Heat and Mass Transfer 55, 
7234 (2012). 
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Kirchoff’s law ( a fS Aε= ), and Planck’s radiation function ( ) 4

0

,    g T d Tλ λ σ
∞

=∫ , we 

obtain the total flux transmitted from the sink to the source as: 

41
1 2( )e S a e S a

dq
n B S S q nB S q nS T

dx
σ= − + + +       (A-2) 

where 1 1

0

( )q i dλ λ
∞

= ∫ , which represents the radiant power per unit area traveling from the 

sink to the source. (Larkin, 1957) divided the radiative parameters into three groups 

defined as follows: 

( )e S aM nB S S= +          (A-3) 

e SN nB S=           (A-4) 

aP M N nS= − =          (A-5) 

Here M, N and P are the interception, scattering, and absorption cross sections, for a unit 

volume of an insulation medium, respectively. Therefore: 

41
1 2

dq
Mq Nq P T

dx
σ= − + +         (A-6) 

By solving the flux equations in the absence of internal emission, (Larkin, 1957) 

developed an equation for the heat flux transmittance through an insulation material as 

follows: 

( ) ( )
2 2 2 2

2 2 2 2
2

1 2 2 2 2
0

2
0 1

n

nl M N nl M N

n

M N M N M
q e e

M N M M N M

∞
− − − −

=

 − − −
= −  

− + − +  
∑   (A-7) 

The values of N, M and P can be obtained from Figure A.1–A.3 respectively. 
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Figure A-1: Scattering parameter for glass fibers. This plot has been taken from the work of Larkin, 1957. 
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Figure A-2: Interception parameter for glass fibers. This plot has been taken from the work of Larkin, 

1957. 
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Figure A-3: Absorption parameter for glass fibers. This plot has been taken from the work of Larkin, 1957. 
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Appendix B6  

Equations of Electromagnetic Theory 

 

The scalar wave equation is a PDE and the solution of interaction of an IR wave with a 

cylinder can be mathematically found using separation of variables and is a function of 

the fiber diameter, fiber through-plane orientation angle, fiber refractive index, and 

wavelength (Bohren and Huffman, 1983). A polarized IR wave is composed of two 

mutually perpendicular electric and magnetic waves. A solution to the wave cylinder 

interaction for such cases is given by a set of vector cylindrical harmonics (Bohren and 

Huffman, 1983). The IR wave incident on a cylindrical fiber can be grouped into two 

cases depending upon whether the electric or magnetic component of the wave is 

polarized parallel or perpendicular to the fiber axis. The relation between incident and 

scattered intensity wave can be written in a matrix notation as, (Bohren and Huffman, 

1983) 

3
1 4( sin cos )4

3 2

2

sin
C C

iIs Iiik r z

IIs IIiC

E T T E
e e

E T T Ekr

π
φ φ

π φ
−    

=    
    

     (B-1) 

where  

( )1 0
1

2 cosn
n

T b b nη
∞

Ι Ι
=

= + ∑          (B-2) 

                                                 
6 Contents of this appendix have been published in an article entitled “Dual-Scale 3-D Approach for 
Modeling Radiative Heat Transfer In Fibrous Insulations”, by R. Arambakam, H.V. Tafreshi, and B. 
Pourdeyhimi, International Journal of Heat and Mass Transfer 64, 1109 (2013). 
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( )2 0
1

2 cosn
n

T a a nη
∞

ΙΙ ΙΙ
=

= + ∑         (B-3) 

( )3
1

2 sinn
n

T i a nη
∞

Ι
=

= − ∑         (B-4) 

( )4
1

2 sinn
n

T i b nη
∞

ΙΙ
=

= − ∑         (B-5) 

are the elements of the scattering matrix given in Eq. B-1. This mathematical framework 

is built around the assumption that the fiber is infinitely long (length to diameter ratio is 

very high). The energy of scattered wave at large distance from the fiber, when the 

electric wave is parallel to the cylinder axis is given by the expression 

[ ]s n n n n n
n

E E b N ia M
∞

Ι Ι Ι
=−∞

= − +∑        

 (B-6) 

The expansion coefficientsna Ι  and nb Ι can be expressed in terms of Henkel and Bessel 

functions as follows. 

2
n n n n

n
n n n

C V B D
a

W V iDΙ

−
=

+
         (B-7) 

2
n n n n

n
n n n

W B iD C
b

W V iDΙ

+
=

+
         (B-8) 

The individual terms in the above equation are given as, 

( ) ( ) ( ) ( )2 / /
n n n n nB m J J J Jξ ξ η ξ η η ξ = − 

% % % %% % %        (B-9) 

( ) ( )
2

2
cos 1n n nC n J J

ξ
φη η ξ

η
 

= − 
 

%
%% %

%
       (B-10) 
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η
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%%% %

%
       (B-11) 

( ) ( ) ( ) ( )2 / /
n n n n nV m J H J Hξ ξ η ξ η η ξ = − 

% % % %% %% % %       (B-12) 

( ) ( ) ( ) ( )/ /
n n n n nW i J H J Hξ η η ξ ξ η ξ = − 

% % % %% %% % %       (B-13) 

where sin Cxξ φ=%  , 2 2cos Cx mη φ= −%  and / 2fx kd= . 

Similarly for the case where the magnetic component is parallel to the cylinder axis, the 

scattered wave is given by the expression 

[ ]s n n n n n
n

E E ia M b N
∞

ΙΙ ΙΙ ΙΙ
=−∞

= +∑        (B-14) 

Here Mn and Nn are the vector cylindrical harmonics and the corresponding expansion 

coefficients are given as 

2
n n n n

n
n n n

A V iC D
a

W V iDΙΙ

−
= −

+
         (B-15) 

2
n n n n

n
n n n

C W A D
b i

W V iDΙΙ

+
= −

+
         (B-16) 

where ( ) ( ) ( ) ( )/ /
n n n n nA i J J J Jξ ξ η ξ η η ξ = − 

% % % %% % % . 
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Appendix C7 

Experimental Results of Houston and Korpela 

 

case T1 (K) T2 (K) qC qR qT qE error (%) 
1 308.8 285.2 16.41 10.94 27.35 28.49 4 
2 337.3 285.3 37.78 28.5 66.28 68.86 3.7 
3 365.2 285.6 59.49 52.75 112.24 116.66 3.8 
4 392.7 285.7 83.36 83.36 166.72 173.56 3.9 

 

Table C-1: Calculated contribution from conduction qC (W/m2) and radiation qR (W/m2) to the total flux qT 

(W/m2) compared to the experimentally measured heat flux qE (W/m2). T1 and T2 are the hot plate and cold 

plate temperature respectively. The values are for fiberglass with a bulk density of 8.82 kg/m3 placed 

between two plates of emissivity 0.83 and with insulation thickness of 3.8 cm. 

 

                                                 
7 The values of heat flux in this appendix are obtained from the paper, “Heat Transfer through Fiberglass 
Insulation”, by R. L. Houston and S. A. Korpela, Proceedings of the 7th International Heat Transfer 
Conference, Munchen, Federal Republic of Germany, 499 (1982). 
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Appendix D8 

Refractive Indices of Glass at Different Temperature 

 

wavelength temperature n k 
2.5 1159.1074 1.492 1.13E-05 
3 965.9228333 1.494 1.07E-04 
4 724.442125 1.497 1.69E-04 

4.95 585.4077778 1.5 1.60E-03 
5.36 540.6284515 1.4 2.00E-02 
5.77 502.2129116 1.31 4.00E-02 
5.9 491.1472034 1.32 4.00E-02 
6.05 478.97 1.33 5.00E-02 
6.2 467.3820161 1.32 4.00E-02 
6.36 455.623978 1.31 4.00E-02 
6.52 444.4430215 1.28 3.00E-02 
6.7 432.5027612 1.26 3.00E-02 
6.89 420.5759797 1.23 3.00E-02 
7.08 409.2893362 1.21 4.00E-02 
7.29 397.4991084 1.17 5.00E-02 
7.51 385.8546605 1.13 7.00E-02 
7.75 373.9056129 1.07 1.20E-01 

8 362.2210625 1 1.50E-01 
8.26 350.819431 0.79 3.00E-01 
8.55 338.9202924 0.78 5.80E-01 
8.85 327.4314689 0.92 8.50E-01 
9.18 315.6610566 1.05 1.08E-02 
9.53 304.0680483 1.6 1.24E-02 
9.92 292.1137601 1.85 9.50E-01 
10.33 280.5196999 2.01 8.50E-01 

 

Table D-1: Refractive indices of glass at different temperatures

                                                 
8 The values of refractive indices in this Appendix are obtained from the paper, “Thermal Radiative 
Properties of Glass from 0.32 to 206µm”, by C.K. Hsieh and K.C. Su, Sol. Energy 22, 37 (1979). 
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Appendix E9 

Refractive Indices of Mineral Wool at Different Temperatures 

 

wavelength temperature n k 
3 965.9228333 - - 

3.5 827.9338571 - - 
4 724.442125 - - 

4.5 643.9485556 - - 
5 579.5537 1.53 1.45E-02 
6 482.9614167 1.526 2.32E-02 

6.5 445.8105385 1.491 2.98E-02 
6.8 426.1424265 1.458 3.29E-02 
7 413.9669286 1.436 4.09E-02 

7.2 402.4678472 1.411 4.74E-02 
7.4 391.5903378 1.385 5.51E-02 
7.6 381.2853289 1.348 6.15E-02 
7.8 371.5087821 1.303 7.86E-02 
8 362.2210625 1.26 9.98E-02 

8.2 353.3864024 1.202 1.26E-01 
8.4 344.9724405 1.137 1.70E-01 
8.6 336.9498256 1.082 2.48E-01 
8.8 329.291875 1.032 3.55E-01 
9 321.9742778 1.001 4.93E-01 

9.2 314.974837 1.009 6.53E-01 
9.4 308.2732447 1.07 8.15E-01 
9.6 301.8508854 1.178 9.47E-01 
9.8 295.6906633 1.307 1.04E+00 
10 289.77685 1.436 1.09E+00 

 

Table E-1: Refractive indices of mineral wool at different temperatures (trial 1)  

                                                 
9 The values of refractive indices in this Appendix are obtained from the paper, “Ribbing, Infrared Optical 
Constants of Mineral Wool Raw Materials”, by G. Ljungdhal, J. Fellman and C. G. Ribbing, J. Non-Cryst. 
Solids 136, 137 (1991). 
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wavelength temperature n k 
3 965.9228 - - 

3.5 827.9339 1.558 9.42E-03 
4 724.4421 1.549 9.60E-03 

4.5 643.9486 1.536 1.08E-02 
5 579.5537 1.519 1.20E-02 
6 482.9614 1.468 2.03E-02 

6.5 445.8105 1.437 2.81E-02 
6.8 426.1424 1.407 3.00E-02 
7 413.9669 1.388 3.86E-02 

7.2 402.4678 1.364 4.59E-02 
7.4 391.5903 1.343 5.44E-02 
7.6 381.2853 1.311 6.02E-02 
7.8 371.5088 1.27 7.67E-02 
8 362.2211 1.232 9.82E-02 

8.2 353.3864 1.183 1.23E-01 
8.4 344.9724 1.125 1.65E-01 
8.6 336.9498 1.075 2.36E-01 
8.8 329.2919 1.03 3.36E-01 
9 321.9743 1.004 4.70E-01 

9.2 314.9748 1.019 6.24E-01 
9.4 308.2732 1.089 7.78E-01 
9.6 301.8509 1.211 8.97E-01 
9.8 295.6907 1.352 9.66E-01 
10 289.7769 1.489 9.94E-01 

 

Table E-2: Refractive indices of mineral wool at different temperatures (trial 2) 
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wavelength temperature n k 
3 965.9228 - - 

3.5 827.9339 1.567 7.89E-03 
4 724.4421 1.56 8.44E-03 

4.5 643.9486 1.547 8.94E-03 
5 579.5537 1.532 1.01E-02 
6 482.9614 1.483 1.69E-02 

6.5 445.8105 1.453 2.34E-02 
6.8 426.1424 1.424 2.45E-02 
7 413.9669 1.406 3.24E-02 

7.2 402.4678 1.383 3.93E-02 
7.4 391.5903 1.362 4.73E-02 
7.6 381.2853 1.331 5.31E-02 
7.8 371.5088 1.291 6.97E-02 
8 362.2211 1.255 9.03E-02 

8.2 353.3864 1.208 1.15E-01 
8.4 344.9724 1.151 1.55E-01 
8.6 336.9498 1.104 2.22E-01 
8.8 329.2919 1.062 3.17E-01 
9 321.9743 1.036 4.44E-01 

9.2 314.9748 1.049 5.95E-01 
9.4 308.2732 1.117 7.48E-01 
9.6 301.8509 1.235 8.65E-01 
9.8 295.6907 1.374 9.36E-01 
10 289.7769 1.512 9.64E-01 

 

Table E-3: Refractive indices of mineral wool at different temperatures (trial 3) 
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wavelength temperature n k 
3 965.9228 - - 

3.5 827.9339 - - 
4 724.4421 1.568 1.61E-02 

4.5 643.9486 1.553 1.83E-02 
5 579.5537 1.534 2.05E-02 
6 482.9614 1.481 2.78E-02 

6.5 445.8105 1.443 3.31E-02 
6.8 426.1424 1.414 3.85E-02 
7 413.9669 1.392 4.30E-02 

7.2 402.4678 1.368 4.81E-02 
7.4 391.5903 1.339 5.44E-02 
7.6 381.2853 1.304 6.26E-02 
7.8 371.5088 1.263 7.44E-02 
8 362.2211 1.219 8.67E-02 

8.2 353.3864 1.156 1.03E-01 
8.4 344.9724 1.073 1.35E-01 
8.6 336.9498 0.997 2.12E-01 
8.8 329.2919 0.915 3.30E-01 
9 321.9743 0.853 4.96E-01 

9.2 314.9748 0.846 6.88E-01 
9.4 308.2732 0.902 8.87E-01 
9.6 301.8509 1.024 1.063 
9.8 295.6907 1.193 1.191 
10 289.7769 1.377 1.263 

 

Table E-4: Refractive indices of mineral wool at different temperatures (trial 4) 
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wavelength temperature n k 
3 965.9228 1.477 8.06E-03 

3.5 827.9339 1.465 1.02E-02 
4 724.4421 1.45 1.30E-02 

4.5 643.9486 1.432 1.59E-02 
5 579.5537 1.409 1.86E-02 
6 482.9614 1.342 2.62E-02 

6.5 445.8105 1.289 3.51E-02 
6.8 426.1424 1.249 4.43E-02 
7 413.9669 1.219 5.21E-02 

7.2 402.4678 1.183 6.19E-02 
7.4 391.5903 1.165 8.27E-02 
7.6 381.2853 1.098 9.06E-02 
7.8 371.5088 1.044 1.06E-01 
8 362.2211 0.959 1.29E-01 

8.2 353.3864 0.849 2.21E-01 
8.4 344.9724 0.746 3.74E-01 
8.6 336.9498 0.704 5.66E-01 
8.8 329.2919 0.729 7.63E-01 
9 321.9743 0.799 9.33E-01 

9.2 314.9748 0.88 1.105 
9.4 308.2732 1.018 1.297 
9.6 301.8509 1.248 1.45 
9.8 295.6907 1.533 1.497 
10 289.7769 1.787 1.44 

 

Table E-5: Refractive indices of mineral wool at different temperatures (average values of refractive 

indices given in Tables E-1– E-4). These values were used for the computations in Chapter 5. 
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